How Electronios Probes the Sea!
 EXPERIMENTER HEBRUARY-MARCH 75%

Electronic Car Warrimp for Pennies a Week!

Budget 10-80 Meter Ham Receiver!
 TEST REPORIIB:
 Heathkit's AR-13A AMFFW 54-wat Steren Receiver Electro-Voise's Goronet Speaker System Kits
 Al's XA Manual Mi-Fi Tumbable

American Basic Science Club's Master Lab.... a HOME SGIENGE LAB AND COUVSE You Get AlL the Following Equipment in 9 Monthly Kits

9 KIT MASTER LAB Includes ALC the Equipment for ALC the Above...only $\leqslant 5$
 onir COUPON ONIY - CANCEL ANY TIME YOU WISH - MONEY BACK IF NOT DELIGHTED

MULTI-USE DESIGN - A MASTER LAB FEATURE
All the above equipment, as separate units, adds up to over $\$ 13000$ How can the 9 kit Master Lab have it all for only $\$ 3755$
Multi-use design is the onswer. For example: The Slide Projector quickly and easily
converts into the Photo.Enlarger. Spectroscope. Cloud Chamber Illuminator. et
Similarly, the Transif Head doubles as a Telescope Mount. Such multo-purpose desig used anly where it is adventageous. For example, it is NOT used in such applications

KIT-A-MONTH - OR ALL AT ONCE SEPARATE UNITS ALL GOOD BUYS

NO EXPERIENCE NECESSARY - IT'S EASY! IT'S FUN:

KIT-A-MONTH. . THE EASY WAY TO A WONDERFUL LAE!

* You take only as many kite as you wish - no obligation.
* You may return any kit and receive full refund.

These "No Risk" assurances because we know
you'il be amazed and delighted
The first kit will convince you that you want the Master Lab Send $\$ 2$ today - get your first kit on its way!
All Orders on 10 Day Approval - Your Sotisfaction of Your Money Back Start sending me the MASTER LAB in 9 monthly kits. enclose $\$ 2.00$ and will pay $\$ 3.95$ plus COD postage on receipt of each kit. I may cancel unshipped kits of any time. Send me complete MASTER LAB (all 9 kits) in one shipmen enclose $\$ 37.55$ Full Payment, Postage Paid.
] Send me only the Full Payment, Postage Paid

NAME

ADDRE
ADDRESS
CIM \& STATE 501 East Crockelt St. San Antonio. Texas 78202

That

 a SGING: Bur

Perfect for Plant, Lab, Hobby, Home NEW LOW-COST KIT TO BUILD PHOTOELECTRIC DEVICES

Stock No. 60,441-HP
\qquad of practical application tor this
 for entrance ways or conveyor thelts, light-actuated door opener, llightreter. transmitter power output cludes: $3 / \mathrm{T}-4$ CdS chircuit destigns posible In . . Mounting bracket. Sigma AC-DC relay 2. pase booklet defining 10 different projects.

BRILLIANT ELECTRONIC FLASH TUBES
FOR PHOTOGRAPHERS \& MECHANICS Time your car ignition, use for photo fash, gigual tubes, flled With Xenon gas, have giass envelopes With sealed Enstructions plications. Op for low energy repetitive flash ap $1 / 4$ diam. For its on an anode between 120 . and $500 . \mathrm{V} ., 2 \cdot 3 / \mathrm{s} \mathrm{lg}$. x sTock No sec, av. flash rate, $20 \cdot \mathrm{hr}$ - approx. Iffe.
 STOCK NO 40,725 -HP . $\$ 5.20$ Ppd. Portable photo equipment applications in covered refectors or housings protecting user from contact with high voltage Low operating
voltage 400 to $550 \cdot v$.$) well gulted for use with electrolytic type$ capacitors. $21 /{ }^{\prime \prime}$ high x 3/4" diam mounted on a $1-3 / \mathbf{g}^{\prime \prime}$ diam. x ptng serve as soldertng terminals. Typleal photo fiash application uses

\qquad
SOLVE PROBLEMS! TELL FORTUNES! PLAY GAMES!
NEW WORKING MODEL DIGITAL COMPUTER ACTUAL MINIATURE VERSION
OF GIANT ELECTRONIC BRAINS

Fascrinating new seethrough morlel computer
 shifts, complements, carrises, memorizes, counts
 32-page instruction book covering operatich, computer language Stock No. 70,683-HP $\$ 5.00$ Postpaid

RUGGED, LOW-PRICED EXPERIMENTAL ELECTRO-MAGNET

 Hobbyists, instructors and industrial lab men Holl find inis well-built Electro-Maynet Inval-wable. Demonstrate principles of electro-mag netism. Actually lifts 100 ins. when powered by a single $11,2 \mathrm{y}$ fashlight battery Easily ments-lifting power, magnetic fux and mag. netomotive and field configuration. Unit includes magnet and yoke assembly, battery holder, leads, clips and eyebolls Steel core and yoke precision ground for max. flatness. About $21 / 2^{\prime \prime}$ Stock No. 60,435-HP.
. $\$ 10.00$ Postpaid

HOME WEATHER STATION
New "Weather Station" is highly sensitive to weather changes. Consistently accurate thermoneter to $\pm 2 \%$; barometer accurate to $\pm .25$ and hygrometer to $\pm 5 \%$. Foretells weather changes from 12 ho 24 hours li advance. Hygrometer calibrated in percent relative humidity. Excellent for teaching weather phenomena and meterological hobby work. Instrument mounted on handsome wood-grained wall panel $151 / 2{ }^{2} \times 53 / 4$. Meter cases heavily metalized-combines beauty and protection, Dials, in etched aluminum, of high preciston. Full instructions.
Stock No. 70,607-HP
$\$ 9.95$ Postpaid
FUN WITH SLACK LIGHT MAGIC GLOW KIT
"BLACK AEE FEATURE ARTI GLACK LIGHT"' Amaze your friends with Black Light wizardry, filter-type black light bulb, bulb starter, starter switch. pair of 2 .pronged clips. iline cord, 2 tions for assembly. Stock No. 70,587-HP i. $\mathbf{5 5 . 2 5}$ Postpald Gomplete Magle Giow shit incluaes paints and in tracer powder, pen, 3 brushes, specimens of fuk, fuorescent crayon, nerite from Carada, fluorite frons England, willemite froni Stock No. $70.256-\mathrm{HP}$.

MAKE YOUR OWN POWERFUL ASTRONOMICAL TELESCOPE Grind Your Own Astronomical Mirror sive contain dirror blank, tool phraienses. You build instruments ranging in velue
dollars.

Stock No.	Diam.	Mirror Thickness	Price
$70,009 . \mathrm{HP}$	$4^{1 / 4}{ }^{\prime \prime}$	$3 / 4{ }^{\prime \prime}$	\$ 7.50 ppd.
70,004-HP	$6^{\prime \prime}$	1 '	11.95 ppd .
$70.00 \mathrm{~S}-\mathrm{HP}$	$8{ }^{\prime \prime}$	$13 / 8$	19.50 ppd .
70,006-HP	$10^{\prime \prime}$	$13 / 6 /$	30,75 ?
70,007-HP	$121 / 2^{\prime \prime}$	$21 / 8^{\prime \prime}$	58.95

See the Stars, Moon. Planets Close UpI

Photographersl Adant your camera to this Scope for ex$\frac{\text { cellent Telephoto shots and iascinating photos of }}{60 \text { TO } 180 \text { POWER! Famous }}$ Mt. Palomar Typel An Unusual Buyl See the Rlongs of saturn. the fascunating planet Mars, huge craters on the Moon, phases ores. AlumEquatorial overcoated $3^{\prime \prime}$ diampeter high-speed
 eyepiece and a mounted Barlow lins. Optical
Finder releserpe included. Hardwoun. bortable Finder 'Celescope included. Hardwowid bortable
tripol.
FREF. CHART PlUs 272 page 'HAND WOOK OF HEAV ENS' plus 'HOW TO C'SE YOUR TELESCORE' BOOK.
Stock No. 85,050-HP
$\$ 29.95$ Postpald
$41 / 4$ " Reflecting Telescope-up to 225 Power Stock No. 85,105-HP. $7 \$ 1.50$ f.0.B.

CHECK, MEASURE, INSPECT WITH THIS LOV/-COST 6-POWER JR. POCKET COMPARATOR

(Complete with leather case)

Measures to .005". Linear, ircular and thicbnens scales for checking layouts, machining on took, dies, gauges, threads. chamfers, ett. Jithed glass reticle insures eccuracy. Won't bend or war). Clear cell admits light. Magnifier can be focused and locked. $13 / 4$ " high, easily tits pocket. Stock No, 30,169-HP . . . $\$ 12.50$ Postpaid

COMPARATOR ILLUMINATOR Battery Operated
Stock No. 50,076-HP
\$7. 55 Postpaid

Terrific Buy! Amerlcan Madas OPAQUE PROJECTOR

Prosects illustrations, up to 3" 2: 31/2" and enlarges them to $35^{\prime \prime}$, $3^{\prime \prime}$ "f screen is $61 /$ ft. from projector: larger pletures if screen
 Operates on 115 volt. A.C current, 8 .ft. extension cond and plug Included. operates on
60 watt bulh, not included. Size $12^{\prime \prime} \times g^{\prime \prime} x$ $41 / \mathrm{g}^{\prime \prime}$ wide. Welght 1b., 2 oz . Plastic case with huit-in handic Stock No. 70,199.HP $\$ 7.95$ Postpaid FASCINATING NEW KALEIDOACOPE INSERT, same unit as above, but provides endless additional projects with evcrchanging kaleidoscope Stock No

'FISH' WITH A MAGNET

Go Treasure Hunting On The Baftom
Great idea! Fascinating fun and sometimes tre mendously profitable! Tie a line to our 5-1b. Mannetdrop it overboard in bay, river, lake or ocean. Troll it along the bottom-your "treasure" haul can be outboard motors, anchors. fishing tackle, all kinds of metal valuables. $5-1$ b. Magnet is war surplus-Alnico v rype $]$ -Gov't Cost $\$ 50$. Lifts over 150 lbs . on land-nuch greater Stock No. 70,571.HP 5-1b. Magnet
\$12.50 Postpaid Stock No. 70,570-HP $31 / 2 \mathrm{lb}$. Lifts 40 ibs.. ... $\$ 8.75$ Postpaid Stock No. 70,572.HP $71 / 2 \mathrm{Ib}$. Lifts $175 \mathrm{lbs} . . \$ 18.75$ Postpaid Stock No. 85,152-HP 15 lb. size lifts over 350 lbs. $\$ 33.60$ Fob

Tiny Lamp Gives Sun-Like Brifliance For Sharp Table-Top Photoçraphs
 illuminated withut glare true coldes fring to life, Cers
 atracture for use in any room, on desk or bedside. 1.2 No clamps ar stands, needen. Imbable hlack metal trimpled in white, Hase $4^{\prime \prime}$ dia. $x 2^{1,2 "}$ high, has on-off switch, ${ }^{\prime}$

MAIL COUPON for IDEE CATAIOG "HP"

RADIO－TV

CONTENTS／INDEX	发	$\begin{array}{\|l\|l\|} \hline \text { 츨 } \\ \text { 范 } \end{array}$	든 竜 言			$\stackrel{\rightharpoonup}{3}$			$\sum_{i}^{\underset{y}{\underset{z}{z}}}$			率
Exploring the New World Under the Sea． 41	\checkmark	\checkmark									\checkmark	
Transistor Characteristics Checker．．．． 47		\checkmark	\checkmark							\checkmark		\checkmark
Stereo Compacts．．．．．．．．．．．．．．．．．．． 51	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark			
10．80 Receiver．．．．．．．．．．．．．．．．．．．． 57		\checkmark	\checkmark	\checkmark								\checkmark
Darkroom Thermometer．．．．．．．．．．．．． 61		\checkmark	\checkmark								\checkmark	\checkmark
The XYL．．．．．．．．．．．．．．．．．．．．．．．．．． 64	\checkmark			\checkmark								
Music Box Alarm ．．．．．．．．．．．．． 65	\checkmark		\checkmark					\checkmark			\checkmark	\checkmark
Knock Together Speaker System．．．．．． 70	\checkmark						\checkmark	\checkmark				
NBC－TV－African Style．．．．．．．．．．．．．． 72	\checkmark								\checkmark		\checkmark	
Auto Sentinel．．．．．．．．．．．．．．．．．．．．．． 75	\checkmark		\checkmark								\checkmark	\checkmark
Pep－Up Those Dry Cells．．．．．．．．．．．．． 79	\checkmark							\checkmark		\checkmark	\checkmark	
Helicopter That Flies．．．．．．．．．．．．．．．． 80	\checkmark	\checkmark									\checkmark	
VU Meter．．．．．．．．．．．．．．．．．．．．．．．． 81	\checkmark		\checkmark				\checkmark		\checkmark			\checkmark
Lab Check－Heathkit AR－13A．．．．．．．． 85	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark			
Lab Check－AR Turntable XA．．．．．．．． 87	\checkmark	\checkmark					\checkmark	\checkmark				
Propagation Forecast．．．．．．．．．．．．．．．． 88		\checkmark				\checkmark						
Operation QRM．．．．．．．．．．．．．．．．．．． 89	\checkmark					\checkmark						
Inductance Bridge．．．．．．．．．．．．．．．．．． 91		\checkmark	\checkmark							\checkmark		\checkmark
Oscilloscopes．．．．．．．．．．．．．．．．．．．．．． 95	\checkmark	\checkmark								\checkmark		
Ham Receiver Goes CB．．．．．．．．．．．． 132	\checkmark	\checkmark		\checkmark	\checkmark							\checkmark

WHITE＇S RADIO LOG，Vol．43，No． 1 —Page 106

DEPARTMENTS • Positive Feedback 6 －Bookmark 16 －Ask Me Another 21 New Products 27 －Literature Library 104 －Ad Index 134

New Model 161 UTILITY TESTER ${ }^{\text {® }}$
 FOR REPAMRING ALL ELECTRCALAPPLIANCES MOTORS•AUTOMOBILES•TV TUBES

As an electrical trouble shooter the Model 161:

- Will test Toosters, Irons, Broilers, Heating Pads, Clocks, Fans, Vacuum Cleaners, Refrigerators, Lomps, Fluorescents, Switches, Thermostats, etc.
- Will rest $\frac{\text { all }}{\text { picture tubes) for fubes }}$ (ineluding and burned out tubes.
- Measures A.C. and D.C. Voltages,
(Both 110 Volt and 220 Volt lines).
- Will measure current consumption (omperes) while the appliance under test is in operation.
- Incorporates a sensitive directreading resistance range which will measure all resistances commonly used in electrisal appliances, motors, etc.

As an Automotive Tester the Model 161 will test:

 - Both 6 Volt and 12 Volt Storage Batteries - Generators - Starters Distributors - Ignition Coils - Regulators - Relays Circuit Breakers - Cigarette Lighters - Stop Lights - Condensers - Directional Sienal Sys tems All Lamps and Bulbs - Fuses - Heating Systems - Horns - Also will locate poor grounds, breaks in wiring, poor connections, efc.

INCLUDED FREE!!

This 56-page-book-practically a condensed course in electricity. Learn by doing.
Just read the following martial list of conients:

- What is electricity? . EImplifed
version of Ohms Law What is vattage? Simplifed wattage charts. How to measure voltleakage - How to test ai current, resistance and motors using a simplined trouble-shooting technique.
- How to test all TV tubes; also simple procedure for determining which specific tube (or tubes) to causing
the trouble. the trouble.
- How to trace trouble in the electrical circuits and parts in automobiles and trucks.

Model 161 comes complete
with obove book and test
leads. Only

You don'l pay for the Model 161 unfil AFTER you have examined if in the privacy of your heme!

Try it for 10 days before you buy. If completely satisfied then send $\$ 5.00$ and pay the balance at the rate of $\$ 5.00$ per month until the total price of $\$ 22.50$ (plus small P.P. and budget charge) is paid. If not completely satisfied, return to us, no explanation necessary.

ACCURATE INSTRUMENT CO., INC.

Dept. D. 381911 Faile St., Bronx, N. Y. 10474
Please rush me one Model 161. If satisfactory I agree to pay $\$ 5.00$ within 10 days and balance at rate of $\$ 5$ per month untit total price of $\$ 22.50$ (plus small P.P. and budget charge) is paid. If not satisfactory, I may refurn for cancellation of account.

Nome

Address \qquad
City \qquad Zone \qquad Stape

In any CB application

you'll outperform 'em all with a MESSHNGER。

Your own 2-way radio for Business or Personal use!

"PERSONAL MESSENGERS"-Compact, hand-held 100 milliwatt or $11 / 2$ watt units! Rugged and reliable-1 transistors, 4 diodes. Twice the sensitivity and 40% more range than similar units with conventional circuitry-more output than similar units with same rated inputs!
Cat. No. 242-101. . 100 Milliwatts.... 5109.50 Net Cat. No. 242-102. . $1 \frac{1}{2}$ Watts: 5129.50 Net

"MESSENGER";"MESSENGER TWO"

For mobile, base station. High efficiency makes full use of maximum allowable legal power. Excellent receiver sensitivity and selectivity. Automatic "squelch" control. 5 crystal controlled channels on the "Messenger" and 10 crystal controlled channels plus tunable receiver on the "Messenger Two".

"MESSENGER" - \$114.95 Net
Cat. No. 242-127.
$115 \mathrm{VAC} / 6 \mathrm{VDC}$ Cat. No. 242-128........ 115 VAC/12 VDC
"MESSENGER TWO" - $\$ 169.95$ Net Cat. No. 242-162......... 115 VAC/6 VDC Cat. No. 242-163......... 115 VAC/12 VDC
"MESSENGER III"-Everything you want in a CB transceiver-a husky signal, extreme sensitivity, razor-sharp selectivity-and complete flexibility for base station, mobile, public address, or battery powered portable use! Double conversion receiver-set-and-forget "Volume" and "Squelch" controls - 11 channel coverage-"Tone

The nation's most popular Citizens Radio equipment line!
Rated BEST by Distributor Salesmen in National Survey! Alert' Selective Calling System available as accessory.
Cat. No. 242-150
12 Volts DC Messenger III..... $\$ 189.95$ Net Cat. No. 250-823
117 Volt AC Power Supply... $\$ 29.95$ Net
WRITE TODAY for full color brochure, or see your Dealer/Distributor and ask for a demonstration!

E. F. JOHNSDN CDMPANY

(8) 7342 TENTH AVE. S.W. - WASECA, MINNESOTA

JULIAN M. SIENKIEWICZ WA2CQL, 2W5II5	Editor
WILIJAM HARTFORD KKD7432	Associate Editor
JOSEPH D'AMATO	Art Editor
SID GREIFF	Art Director
ANTHONY MACCARRONE	Associate Art Director
ALBERT DE QUERQUIS	Art Associato
P. D. URBAIN	Editarial Production Manager
STEVE WEISMAN	Production Assistant
CAROL CRISERA	Art Production Assistant
LEONARD F. PINTO	Production Director
ELLIOT S. KRANE	Adrertising Director
JM CAPPELLO	Adverfising Manager
CARL BARTEE	Advertising Production Manager
RENEE MOELLMANN	Asst. Advertising Production Manager
RONALD SMILEY	Promotion Manager
FRANK A. TAGGART	Coter Art Director
JOSEPH DAFFRON	Erecutive Editor, S\&M Handbooks

President and Publisher
B. G. DAVIS

Executive Vics President and Assistant Publisher JOEL DAVIS

Fice President and Editorial Director HERB LEAVY

RADIO-TV EXPERIMENTER, Vol. 18, NO. 1 (H221, is published bi-monthly by SCIENCE \& MECHANICS PUBLISHING CO., a subsidiory of Davis Publications, Inc. Editorial, business and subscription offices: 505 Park Ave., New York, N. Y. 10022. One-year subscription (six issues)$\$ 4.00$; two-year subscription (12 issues) - \$7.00; and three-year subscription 118 issues) - $\$ 10.00$. Add 75 c per year for postage outside the U.S.A. and Canada. Advertising offices: New York, 505 Park Ave., PL-2-6200; Chicago: 520 N. Michigan Ave., 527.0330 , Los Angeles: 6363 Wilshire Btvd., 653-5037; Atlanta: Pirnie \& Brown, 3108 Piedmont Rd., N.E., 404-233-6729; Detroit: Paul Pequinot, 357 Kendry Drive, Bloomfield Hills, Mich., 313-338-1922; Iong Island: Len Osten, 9 Garden Street, Great Neck, N.Y., 516.487.3305; Southwestern advertising representative: Jim Wright, 4 N . Eight St., St. Louis, CH 1-1965. EDITORIAL CONTRIBUTIONS must be accompanied by return postage and will be handled with reasonable care; however, publisher assumes no responsibility for return or safety of manuscripts, art work, or photographs. Contributions should be addressed to the Editor, RadioTV Experimenter, 505 Pork Avenue, New York, New York 10022.
Second class postage paid at New York, New York and at additional mailing office. Copyright 1964 by Science and Mechanics Publishing Co.

TRAINING FILM
You also get the loan of a motion picture projector and 16 reels of film to help you learn quickly, remember more.

FREEI
Send For 2
Booklets Today!

EMPLOYMENT

 SERVICEAll Devry graduates can receive the help of our highly effective

Job Opportunities continue to increase for the Electronics Technician

Electronics is a multi-billion de'lar industry, gmowing rapidly, calling for well-trained technicians, offering many good paying opportunities. DeVry prepares you at home - or in its well-equipped training centers - for Radio, Television, Communications, Missiles, Computers, Radar, Control Systems, etc.

DeVry sends the type of materials you need for learning electrcnics at home. You build and keep (1) a modern 5 -inch oscilloscope and (2) a portable transistorized meter. Use these on the job or to make money as you learn. You work 300 construction and test procedures with sur exclusive "Electro-Lab". Modern lessons (No. 3 above) with their handy foldout diagrams help to speed your progress.
Let us put our more than 30 years of " k now how" behind you today to help you prepare for a lot of brighter, more prosperous tomorrows. Send coupon for 2 FREE booklets today.
Accredited Member of National Home Study Council
employment service without additional cost.

DeVry Technical Institute
 Chicago - Toronto

4141 Belmont Avenue
Chicago, Illinois 60641

DeVRY TECHNICAL INSTITUTE

4141 Betmont Ave., Chicago, Ill. 60641 Dept. RTE-1-V
Please give me your two free booklets. "Pocknt Guide to Real Earnings." and "Electronics in Space Travel, also include details on how to prepare for a career in Elec tronics. I am interested in the following opport $\lrcorner n i t y$ fields (check one or more)

```
$ Space & Missile Elect
Melevision a
Radar
```

Automation Electronics

- Communication

Computers

- Broadcasting

Industrial Electionies

- Electronic Contiol

AVOID TOO MUCH HEAT

High heat can damage components. Use low heat for soldering, and a pair of long-nose pliers to hold the wire. Pliers act as a heat sink and prevent overheating.

USE A DUAL HEAT GUN
A Weller Dual Heat Gun has 2 trigger positions. One provides low heat for electronic connections; the other gives high heat when needed. You switch instantly to the right temperature for the job.

The greatest time-saver in hi-fi kit building is a Weller Dual Heat Gun. Tip heats instantly . . . no waiting. Spotlight illuminates your work. Long reach tip gets into tight spots and permits soldering with pinpoint accuracy.
A Weller "Expert" Kit includes 100/140 watt dual heat gun, 3 soldering tips, tipchanging wrench, flux brush, soldering aid and solder, in a plastic carrying case. Model 8200PK - $\$ 8.95$ list. Weller Electric Corp., Easton, Pa.

Celer

WORLD LEADER IN SOLDERING TECHNOLOGY

POSITIVE FEEDBACK

Julian M. Sienkiewicz, Editor WA2CQL/2W5115

Can you afford to spend $\$ 30$ to as much as $\$ 200$ for an automobile ignition system that may save you the cost of a few $\$ 10$ tuneups during the life time of your car? Can you afford this sum to save only a fraction of a mile per gallon of gas over the long haul? Can you afford the price of a transistorized ignition system to save even less in money and gain far less in performance if you keep your car tuned up and do your own work? I doubt it.

Standard ignition system-6-cylinder car

Transistorized ignition systems can be one of three types in which transistors serve as switches to aid or replace the contact breaker points of the conventional ignition system. Type one retains the contact breaker points to control the system, type two is controlled magnetically, and type three is a capacitordischarge system. Type one is the most common and is the type available for use on existing cars, so it is the type that concerns us here.

To understand transistor ignition, you

How To Get Improved SWL Performance At The Same Low Price...

Buy The New Heathkit $\mathbf{C R}-64$... Only $\$ 39.95$!

You'Il Like Its New "Lowboy" Styling, Too! Masculine gray, slcek-silhouette metal cabinet with a midnight black front panel accented by green \& white band markings and silver trim ... makes the new Heathkit GR-64 a truly attractive Short wave Receiver you'll be proud to use anywhere in your home!
New Circuit Features For Improved Performance!
Like the larger $5^{\prime \prime}$ round speaker for better sound... a built-in rod antenna for broadcast band reception plus unbalanced input for external antenna . . . a high voltage, transformer-operated power supply for peak receiver efficiency . . . parallel filaments for longer tube life ... new, easier-to-read \& lighted bandspread tuning bar and relative signal strength indicator . . . and a one-piece molded dial for faster, easier construction!

Covers 550 kc To 30 mc in 4 Bands!
Includes broadcast plus 3 shortwave bands. The lighted 7" dial also has a logging scale for quick, easy station selection. Features BFO for receiving code \& SSB transmissions ... 4-tube superhet circuit ... "velvet touch" 16 revolution tuning knob . . electrisal bandspread for maximum station separation ... and a headphone jack for private listening.
Ideal For Novices \& Avid Shortwave Listeners!
Goes together quickly, easily with fast circuit board construction \& simple-to-follow instructions
And at the low price of only $\$ 39.95$, you won't find a better SWL value around ... choose the new GR-64 now!
Kit GR-64, i3 lbs.. $\$ 39.95$

- Reliable 10 transistor, 6 diode circuit . Fixedaligned ceramic IF "Transfilters" ${ }^{\text {B }}$ - Covers 550 kc to 32 mc in five bands - 50 -inch telescopic whip antenna - Zener diode voltage regulation - Smooth, easy flywheel tuning "Built-in $4^{\prime \prime} \times 6^{\prime \prime}$ speaker - Large, slide-rule dial for easy station selection - Headphone jack for private listening - BFO for code \& SSB transmissions - Compact \& battery powered for portability, yet can operate of 117 v . AC with optional $\times \mathrm{P}-2$ accessory ((1) $\$ 9.95$
Kit GC-1A, 18 lbs .
$\$ 95.00$

FREE

 HEATHKIT CATALOGSee these and over 250 other excrting Heathkits availoble in easy-la-build kit form. Sove 50% or more by doing the eosy assembly yourself! Send for your free catalag today 1

HEATH COMPANY, Depl. 19-2 Benton Harbor, Michigan 49023 in Canada: Daystrom, Ltd., Cooksville, Ontario
\square Enclosed is \$ ___ plus shipping.
Please send Modet(s)
[] Please send FrEE 1965 Heathkit Catalog.
Name_-_-_Please - Print)
Address
City_____________________ ${ }^{\text {Sip }}$
- Prices \& specifications subject to change without notice.

Bolve the most complex math problems -cube roots-logarithms quickly, easily. The perfect answer for the electronic hobbyist, designer, engineer. Not a toy but a truly professional tool. Work like the pros with the Alsynco Rule.
Bonus offer: Self-teaching lllustrated course on slide rula technology regularly $\$ 2.00$. With slide rule only $\$ 4.95 \mathrm{ppd}$. Ao C.O.D. Send post card for free literature.
Alsynco R.T.E.-9 171 S . Main St., Natick, Mass.

EARN

You can earn an A.S.E.E. degree at home. College level HOME STUDY courses taught so you can understand them. Continue Four education, earn more in the highly paid electronics industry, Oissiles. computers, transistors, automation, complete electronics. Over 27,000 graduates now employed. Resident school availahle at our Chicago campus-Founded 1934, Send for free catalog. American Institute of Engineering \& Technology $1139 E$ West Fullerton Parkway Chicago 14, ili.
ALL BAND TRAP ATIETNA!

Positive Feedback

must first understand the conventional system. As shown in the diagram, current from the battery is controlled by the contact breaker points on its way to the coil where it is built up to high voltage. From the coil it returns to the distributor which directs it to the correct spark plug. The transistorized system uses the points only to time the transistor which switches the current on and off for the coil. Otherwise it is basically similar to the conventional system.

The claimed advantages for the transistor system are that the points carry a far lower current than they do with the conventional system. Thus point burning, common at about 10,000 miles with the conventional system, rarely, if ever, occurs with a transistorized system. So the points in the new system will last about 30,000 miles. Great, but let's look at the situation a little more closely.

While the points themselves will not burn and develop high resistance, other things can and often do happen to impair efficiency. Rubbing block and cam lobes eventually wear down enough to seriously affect timing. And if, as often happens, one cam lobe wears more quickly than another, one cylinder will fire sooner and the other later than designed. Of course this kind of trouble can also occur with the conventional system, but it is more apt to be discovered and corrected when the points and condenser are changed.

Transistorized ignition systems also fall prey to an interesting failure almost unknown

Regardless of what you pay for other Color TV

it can't perform as well as this one...

and yet a Heathkif set costs as little as $\$ 399$!

Exclusive Heath Features For Unequalled Performance! That's right. No matter how many of your hardearned dollars you pay for another brand of color TV, none can equal the performance of the Heathkit All-Channel, High Fidelity 21 " Color TV! Why? All color sets require minor periodic adjustments to maintain peak picture performance. The Heathkit GR-53A is the only set with a "built-in service center" that provides facilities for perfect picture adjustments. Heath's simple-to-follow instructions and detailed color photos show you exactly what to look for and how to achieve it . . . quickly, easily! Y ou become the expert! Results? Beautiful, true-to-life color pictures day in and day out . . . and no costly color TV service calls for simple picture alignment.
But don't take our word for it. See the special articles on the Heathkit GR-53A in the May issue of Popular Electronics, June issue of Radio-TV Experimenter, February issue of Popular Mechanics, April issue of Science \& Mechanics, and the August issue of RadioElectronics.
Then tear out the coupon and order yours now! Kit GR-53A, chassis, tubes, mask, VHF \& UHF tuners, mounting kit, speaker, 127 lbs $\$ 399.00$

THE ONLY COLOR TV YOU CAN INSTALL 3 WAYS!

1. In Heathkit walnutfinished hardboard cabinet (Illust. opcabinet Mosite), Model GRA-53-6,52 lbs.... \$49.00 2. In Heathkit Deluxe Walnut Cabinet (Illust. above), Model GRA-53-7, 85 lbs. $\$ 115.00$
In a wall, bookshelf, or custom cabinetl

25M. ATMEST
HEATH COMPANY, Dept. 19.2
Benton Harbor, Michigan 49023
\square Enclosed is $\$$, plus shipping.
Please send |Model(s) \qquad -.
\square Please send FREE 1965 Heathkit Catolog.

Name \qquad
Address \qquad
City \qquad Stote \qquad Zip
Prices \& specifications subject to change without notice. CL-193R

LEARN PROFESSIONAL APPLIANCE SERVICING

Repair your own appliances or make extra income

NRI offers a new course that makes professional appliance servicing easy, interesting and profitable.

Now you can learn quickly to repair your own appliances, service your neighbors for extra income or open your own appliance service shop.

Training is low cost, includes professional testing equipment and covers-

- Small and Large Home Appliances
- Farm and Commercial Equipment
- Small Gasoline Engines
- with a special course arrangement for
- Air Conditioning and Refrigeration

Send for $\boldsymbol{F} \boldsymbol{R E} \boldsymbol{E}_{\text {Catalog }}$ and Sample Lesson.
No obligation and
no salesman will call.
 Servicing and Sample Lesson.

City
\qquad
Cly Zone_
Accredited Member Nationa! Home Study Council

THOUSANDS OF BARGAINS TOP VALUES IN ELECTRONIC

Transistors, Modules, Speakers, Stereo, Hi-Fi, Photo Cells and thousands of other Electronic Parts. Send for FREE Catalogue

ELECTRONIC DISTRIBUTORS INC.

ED
Dept. TA. 2, 4900 Elston Chicago 30, 111.

- rush cataloque

Name
Addrete
city .
ELECTROSTATIC GENERATORS

NOW - 4 Models - 150,000 250,000 and 400,000 VOLTS PLUS NEW SUB-MINIATURE Complete Kits 150,000 VOLT MODEL..... $\$ 27.95$ PP. 250.000 VOLT MODEL..... 32.95 PP.

Also Plastic Materials for:
 Dept. RT-47 145 Portiand strat Cambridge, Massachusette

Positive Feedback

to conventional systems. If the engine stops with the points open on a cold day, water condensation on the points may form an ice insulation. In the conventional system the current is high enough to melt the ice, but in the transistor system it often is not. The result: mysterious failure to start on cold days.

Some test evidence suggests that the conventional ignition system is superior to transistorized systems in firing fouled spark plugs because it generally offers a greater voltage output at engine speeds up to 3000 rpm . (Note: most passenger car engines are operating at from about 2000 to at most about 3500 or 4000 rpm in normal highway driving.) This would seem to negate some claims of extended spark plug life with transistorized ignition systems.

Of particular interest to ham radio operators and CB'ers, the capacitive discharge transistorized ignition systems don't work as well when equipped with radio-noise suppression equipment.

Still another problem is shop tuneup test equipment. Expensive ignition analyzers and other test equipment will have to be modified or replaced to be used on cars equipped with transistorized ignition systems. This means that there will be very few shops with the proper equipment to check out or tune up your transistor system, and that those few will have to charge an arm and a leg in order to pay off their expensive test instruments.

Yet, despite these drawbacks, transistorized ignition is here now as a working system in several forms. It does offer certain very real advantages, but at a price to be sure; is it worth this extra cost? In the present stage of development, many automotive design engineers do not believe that the advantages justify the added cost. Especially when the gains over a properly maintained conventional system are so slight.

Perhaps the transistorized ignition system is not yet the answer for general automotive service. Still, there must be something to it or you wouldn't hear so much about it on racing cars, in trucks, and for other specialized uses.
Yes, there are many things that transistorized systems do better than any conventional system. The main advantage is that the coil builds up peak voltage much faster than it can in a conventional system which

Every Organ Feature You've Ever Dreamed Of!

- 17 beautiful organ voices ... Diapason $16^{\prime} \& 8^{\prime}$, Bass Clarinet 16', Trumpet 16', English Horn 8^{\prime}, Violin 8^{\prime}, Oboe ${ }^{\prime}$, Bourdon 16', Flute 8^{\prime}, Flute D'Amour 4', Quint 5-1/3', Saxophone 8', French Horn 8^{\prime}, Cello 8^{\prime}, and Chimes - all at the simple touch of a tab! - Two full-size 44-note keyboards -Built-in 2-speed rotating Leslie plus 2-12" Main speakers - 28 notes of chimes - 13 -note heel \& toe pedal board, range C thru C - New Stereo chorus for exciting "stereo", effects - Color-tone attack, repeat \& sustain percussion... the only organ to give you all 3 - Treble accent tab - Reverb - Manual balance Pedal volume - Expression pedal - Headset outlet for private play - All-transistor 75 -watt EIA peak music power amplifier - Transistor tone generatorswarranted for 5 years - Pre-tuned Tone generator for easily tuning organ, no special "ear" needed - Luxurious Hardwood Cabinet \& bench ... handcrafted with walnut finish.
No Extras, Nothing More To Buy! Everything you need for complete playing versatility is included. There are no speakers, amplifiers, no other "hidden necessities" to add as with other organ kits. It's all there at one price ... even the bench!

2 MANUAL ORGAN HEATHKIT/THOMAS "LARGO"

- 10 true organ voices Variable Repeat Percussion - Two 37 -note keyboards - 20 -watt peak power amplifier - 13note heel \& toe bass pedals - Walnut cabinet Kit GD-232A, organonly, $158 \mathrm{lbs} . \ldots . . . \$ 349.95$

World's Best Buy In Electronic Organs!

GD-983
$\$ 0400 \begin{aligned} & \text { including bench } \\ & \text { \$125 dn., } \\ & \text { as low as } \$ 27 \text { mo. }\end{aligned}$
Full Features...
No Extras To Buy... Saves Hundreds of Dollars New Heathkit//Thomas "Coronado" Transistor Organ!

Saves Hundreds Of Dollars! Save more than $\$ 400$ over the factory assembled version. And you could pay as much as $\$ 1000$ more for other brands, and still not enjoy as many features!
It's Truly A Professional Organist's Dream With A Beginner's Simplicity! And yet, you don't have to be an electronic wizard to build it, nor a professional organist to play it. Famous Heath "Engi-nuity" has reduced assembly to simple steps that require no special talents, tools or knowledge. And the famous Thomas "Musical Fun Book" is included to start you playing many favorites fast! A special recorded 48lesson course is also available that lets ycu learn at your leisure . . . regular $\$ 50$ value, only $\$ 19.95$!
Pay As You Play! Only $\$ 125 \mathrm{dn}$., as little as $\$ 27$ a month. Get free catalog for full details - now!
Kit GD-983, organ \& matching bench, z90 lbs.... $\$ 125$ dn., as low as $\$ 27$ mo.. $\$ 849.00$

TRANSISTORIZED CONVERTER 26-400 MC

Receive signals from 26 to 200 MC (1 MC spread), on broadcast band using car radio, crystal control or tuneable (1 MC spread).

KIT $\$ 11.00 \mathrm{pp}$. WIRED $\$ 20.00 \mathrm{pp}$. WEBBER LABS 40 MORRIS ST. LYNN, MASS.

WIREIESS "WIKE" TALKS TO ALL RADIOS

Now YUU can TALK-SING or PLAY over the radio with th by radio waves. Just touch bution and talk while gitting walk ing ridng ete, 'Tents show reception on afl nearthy car and house radios. Transiatur powered uath darhlite battery
No licente or wermit required (FCC $\$ 15$ cett fied) Guarantaed to work 1 year usirranty-should lat for yeath
 delivery Sent complete-ready to opernte. FREE delivery Sent coniplete-resdy to operate. FREE
Special long diatance anteransaven if vou order from thas ad NOW, Availabie only froul WESTERN RADIO
Dept. WRE-2, Kearney. Nobra Dept. WRE-2, Kearney, Nobr

Positive Feedback

means that full voltage is available to fire the spark plugs at a much higher engine speed range. Here the advantage can be somewhat offset by using conventional system with dual contact breaker points, but nevertheless the transistorized system has it all over the conventional on this point. Racing cars, dragsters, and other vehicles which require top performance at high engine speeds are turning to the transistorized systems to get it. But in every case high speed performance is more important to them than the price. In a race, even a few hundred extra rpm at the critical moment can make the difference between winning and being an also-ran. On the highway it just does not matter that much.

Some truck fleets are turning to transistor systems for a totally different reason. While performance is important to them, the trucker is looking at longer periods of efficient ignition service between tuneups. His reason, money. It works this way. Even though the tuneup may not cost him any more than the $\$ 10$ to $\$ 15$ it would cost you (and union scale truck mechanics don't come cheap), there is another important factor-downtime. If having his truck tied up for just one day costs only $\$ 50$, and often it is much more than that, then the transistorized system becomes a profitable proposition if it saves the downtime of one or two tuneups. But most passenger cars can get tuned up while you are working at your job without costing more than minor inconvenience. Is this worth the extra cost to you?

Transistorized ignition systems could well be a coming thing and, perhaps, stock equipment. However, for the average motorist they may indeed be more trouble and expense than they are worth. On the other hand, if you are a drag racer, an Indianapolis car captain, or Grand Prix pilot you could need the new system right now. Only you can take a look at the kind of driving you do and decide whether or not a transistorized system will give you enough advantages to make it worth the cost.

Electronics in the Garage. While the hood of your old internal combustion runaround is still up, take a look at page 75 of this issue.

You'll see that electronics need not only be under your hood and on your automotive test bench, but can be working for you in still

Some plain talk from Kodak about tape:

Bias transfer characteristics and dependent parameters

Ever heard the story about the pilot on his first solo flight? Unfortunately the engine failed. But fortunately he had a parachute. But unfortunately the chute failed to open. But fortunately he landed on a haystack. But unfortunately there was a pitchfork in the haystack. Except for the unhappy ending, this might be the story of how gamma ferric oxides respond to magnetic fields. Everything about it is fortunate with one exception. Linearity. The oxide needles used in the coatings have atrocious linearity characteristics. Feed in a clean, pure sine wave and out comes a non-sinusoidal complex waveform that looks something like a demented snake trying to bite its own head off. How does it sound? About as pleasant as Junior's first violin lesson.

How then is magnetic recording possible? Fret not-there's a way out. The entire problem is solved by one wonderful, mysterious phenomenon called bias. The transfer curves tell the story.

The slightly twisting curve at the upper left represents the oxide response. The lower curve is a pure, sine wave input. At the upper right we have the result of the response curve on the input . . . a mess.

The reason it looks the way it does is because the sine wave input is affected by the non-linear
characteristics of the gamma ferric oxides. But look closely. Note that while the oxide performance is non-linear when taken over its entire length, we can find linearity over selected sections. In other words, we can get rid of our distortion if we can put the signal on the linear section of the oxide's characteristic curve. And that is exactly what bias cloes. It "lifts" the signal away from the convoluted central area on the graph and moves it out to linear areas.

The amount of bias (that is the current in milliamperes) applied to the head is highly critical if top performance is to be achieved. Bias affects output, high and low frequency sensitivity, signal-tonoise ratio and distortion. This curve explains it.
完

The steep curve represents low frequency sensitivity (measured in db.) at varying bias levels for many tapes. Note that you get good performance providing you have a
bias setting of about 4 milliamperes. (Curves for the other magnetic parameters are sinular in shape and all peak at atout the same bias level.) Vary one milliampere and you "fall off the curve" and suffer severe losses in sensitivity. Now look at the broader curve. You can vary a milliampere with hardly any change in performance at all. Here's the point. Kodak tape has that broad curve. It gives you top performance even though your bias settings aren't perfect. And if your tape recorder is more than a year old, then chances are enough shift has taken place to push you off the cliff. That's why we designed a broad bias curve. And that's why you need it. It's just one more way that Kodak tape gives you an extra bit of assurance of top performance.

Kodar Sound Recording Tapes are available at all normal tape outlets: electronic supply stores, specialty shops, department stores, camera stores . . . everywhere. Eastman Kodak Compa y, MCMLXI

LONG NOSE AND
DIAGONAL PLIERS

Positive Feedback

another way. The Auto Sentinel will start your car in the morning and have it running and warm when you leave the house-quite a luxury on these cold winter days!

The Sentinel circuit, utilizing five relays, is completely self-contained. It has safety provisions against low oil pressure, failure to start, and starting with the car in gear. It is also a compact unit that can be installed permanently in your car in an out of the way place convenient for making the connections to your auto electrical system.

But, as with transistorized ignition, you'll have to decide if the advantages and convenience justify its construction--read no further if you reside in the moderate climate of Southern California.

Meter Mount

Why not put those surplus panel meters to use as test meters in experimental projects by constructing the inexpensive mounting stand shown here?

Just scribe a circle on ordinary pegboard to fit your panel meter body and cut it out with a saw. A length of coat hanger (some of which are found in every well equipped workshop) can be bent as shown in the photo and secured to the pegboard.

Two Fahnestock clips or another type of binding post can be mounted on the face of the pegboard to hold your test leads or wiring setup. Run two short wires from the posts or clips to the meter terminals and you're ready to put the meter to use.
-C. Green, W31KH

For convenience, meter terminals of mounting stand are wired to front of pegboard.

BUILD 20 RADIO CIRCUITS AT HOME
 with the Deluxe PROGRESSIVE RADIO "EDU-KIT" ${ }^{\text {® }}$ (A Practical Home Radio Course

Now Includes
12 RECEIVERS * 3 TRANSMITTERS * SQ. WAVE GENERATOR * SIGNAL TRACER * AMPLIFIER SIGNAL INJECTOR \star CODE OSCILLATOR
\star No Knowledge of Radio Necessary
\star No Additional Parts or Tools Needed
\star EXGELLENT BACKGROUND FOR TV
\star SCHOOL INCUIRIES INVITED
* Sold In 79 Countries

YOU DON'T HAVE TO SPEND

 HUNDREDS OF DOLLARS FOR A RADIO COURSEThe "'Edu-Kit" offers you an outstanding PRACTICAL HOME RADIO COURSE at a rock-bottom price. Our KIt is designed to train Radio \& Electronics Technlclans. making tion practice and servicing. THIS IS A COMPLETE RADIO COURSE IN EVERY DETAIL. In You will learn how to bulld radios, using regular schematics how to wire and solden In a professional manmer; how to service radios, You wlil work with the standard type of
punched metal chassis as well as the latest development of printed circuit chassis. RF and AF lemplifiers and ond osillators, detectors. rectifiers, test equipment. You will learn and practice code, using the Progressive code oscillator, rou will learn and practice troubleshooting, using the Progressive Slgnal Tracer, progressive Slenal Injector, Pro-

Aou will receive training for the Novice. Technician and General clazses of F.c.c. Radio Amateur Licenses. You will build Receiver, Transmitter, Square Wave Generator, Code
Oscillator, Signal Tracer and Signal Injector circuits, and learn how to operate them. You Oscillator, Signal Tracer and Signal Injector circuits, and learn how to operate them. You
will receive an excellent background for television. Hi-Fi and Electronic. Absolutely no previous knowledge of radio of science is required. The "EEdu-Kit" is provide you with a basic education in Electronics and Radio, worth many times the low price you pay, The signal Tracer alone is worth more than the pr

You do not need the sllghtest background in radio or sclence. Whether you are interested In Radio \& Electronics because you
want an interesting hobby, a well paying business or a job with a future, you will find he Edu-kit", a worth-whlle, Investment:
ages and backgrounds have successfuliy used the "Edu-Kit' In More than 79 councarefully designed, step by step, so that you cannot makea"mistake. The 'Eou-kit" allows you to teach yourself at

PROGRESSIVE TEACHING METHOD

The Progressive Radio "Edu-Kit"' Is the foremost educational radio kit In the world, and is universally accepted as the standard in the field of electronics training. The .Edu. learn schematics, study theory, practlce trouble shooting in ali in a ciosety integrated program designed to provide an easinglearned, rado parts of the Edinglt. Eacksround in radio. function. theory and wiring of these parts. Then you build a simple radto. With this first set you wil enjoy isiening to regilar more advanced radio, learn more advanced theory and trouble-shooting. Then you buidoarese manner, and at your own rate, you will
and techniques. Gradualy, in a progressive manner, and
find yourself constructing more advanced mult-tube radio circuits, and dolne work iuke at orofessional Radio Technician. Tracer. Square Whave Generator and Signal Receiver, Transmitter, Code Oacillator, Signal Tracer, Square Wave Generator and signal injector circuits. These are not unprofessional wiring and soldering on metal ehassis, plus the new method of radio construction known

THE HEDU-KIT" IS COMPLETE

You will receive all parts and instructions necessary to build twenty different rad io and electronics eircuits, each guaranteed to operate. Our Kits contain tubes, tube sockets, variable, electrolytic, mica, ceramic and paper dielectic condensers, resistors, tie strips, setenium rectifiers, coils, volume controis and switches, etc.
In additıon, you receive Printed circuit materials, inciuding Printed Circuit chastia, professional electric soldering iron, and a self-powered Dynamic Radio and Electronics Tester. The "Edu-Kit"" also includes Code instructions and the Progresmive Code Oscillator, servicing with the progressive Signal Tracer and the progressive Signal Injector, a High Fidelity Guide and a Quiz Book. You receive Memberanip in Radio-TVClub, reee Consulta. tion Service, Certificate of Merit and Disoou
instructions, etc. Everything is yours to keep.

PRINTED CIRCUITRY

At no increase in price. the "Edu. Kit"

 now includes Printed Circuitry. You build a Printed Circuit Sianal Injector. a unique servicing instrument that can detect many Radio and TV troubles. This revolutionary new technique of radio construction is now becoming popular in commercial radio and TV sets.A Printed Circuit is a special insulated chassis on which has been deposited a con. ducting material which takes the place of wiring. The various parts are merely plugged in and soldered to terminals.

Printed Circuitry is the basis of modern Automation Electronics. A knowledge of this subject Is a necessity today for anyone interested in Electronics.

O-
ORDER FROM AD-RECEIVE FREE BONUS
RADIO \& TV PARTS JACKPOT WORTH $\$ 15$

MESHNA SURPLUS BARGAINS

HI-FREQ MESA transistors, 300 MC. $4 / \$ 1.00$
IBM WIRED MEMORY frames, 100 cores/frame, w/specs
5.00

PHOTO CELL, CLAIREX CL-3. $2 / 1.25$
SCOPE TUBE 3AP1, new............................. 1.00
MINE DETECTOR, locates lost treasure, brand new
w/btry \& spare tubes \& book.................... 45.00
NITE LITER KIT, turns lites on at night. 1.75
IBM FERRITE MEMORY cores w/spec sheet. 200/1.00
RADIO TRANSMITTER, radiosonde, w/tubes, new.... 1.00
COPPER 1 SIDE circuit boards 4×10 inch........... 8 . 8.00
EARPHONE, single, hearing aid type, w/cord \& plug $\quad .60$
SNOOPERSCOPE TUBE, see in dark, \#6032, w/spec
sheet ... 6.50
OPTICAL PRISM, make rainbow in sunlight. $\quad .60$
POLAROID polarizing plastic sheets................... $2 / 1.00$
TRANSITRON power-silicon transistors. 20/1.00
SOLAR BANK kit, 5 cells w/instr. Elec. from sun. . . 1.50
CRYSTAL MIKE, miniature style w/cord. 1.35
REED SWITCH, w/magnet, make burglar alarm, etc. 1.00
IBM plug•in boards, loaded w/parts.............. 6/1.00
TRANSISTORS, 2N35 Gen. Purpose........ 20/1.00
CK 722 TRANSISTORS $6 / 1.00$

ALL MATERIAL FOB LYNN, MASS.

The above items are only a few from our 72-page catalog of surplus bargains. Send $20 ¢$ handling charge.

JOHN MESHNA JR. 23 ALLERTON ST. LYNN, MASS.

BOOKMARK by Bostworm

TTo start the new year off right. scan through your workshop bench and bookshelf, and toss away those old electronic parts catalogs that should be replaced with the later 1965 issues that came in the mail during the last few months. If you do not have a 1965 catalog to replace the old one, now is the time to write out post cards and bring your catalog file up to date. Listed below are a few catalog sources that the ol' Bookworm was lucky enough to receive review copies. If you don't have a 1965 catalog from one or more of these electronic parts suppliers, start writing out post cards today! And be sure to say the ol' Bookworm in Radio TV Experimenter sent you.Allied Radio, 100 N. Western Avenue, Chicago, Illinois 60680
\square Burstein-Applebee Co., 1012-14 McGee Street, Kansas City 6, Missouri
\square Lafayette Radio Electronics Corp., Dept. PR22, P.O. Box 10, Syosset, L.I., New York 11791
\square Newark Electronics Corporation, 223 West Madison Street, Chicago 6, Illinois
\square Olson Electronics, Inc., 260 South Forge Street, Akron 8, Ohio
\square Radio Shack, 730 Commonwealth Avemue, Boston 17, Mass.
\square World Radio Laboratories, 3415 W. Broadway, Council Bluffs, Lowa 51504

Free Comic Book-Ni-Cd Batteries. The "care and feeding" of a rechargeable nickelcadmium battery should be done with complete knowledge of this new-type portable power unit, according to engineers of the Battery Division, Sonotone Corporation, also point out that the nickel-cadmium battery is a sophisticated portable power system and should be treated as such. Experience has shown that the better informed maintenance group handling $\mathrm{Ni}-\mathrm{Cd}$ batteries, the better the performance of the battery and the product in which it is used. As a result of this experience, a unique booklet has been developed, entitled How to Use Nickel-Cadmium Batteries. It is illustrated in cartoon fashion, explaining technical matters in a

light vein and converting the subject into a pleasant halt-hour of informative reading. Any experimenter who plans to use or service nickel-cadmium batteries will find the know-how gained in this booklet invaluable. To get your free copy of How to Use NickelCadmium Balleries (BA-109), write the Battery Division, Sonotone Corporation. Dept. 227, Elmsford, New York.

5-Volume Basic Course. The continual trend toward automation and the everincreasing use of electronics equipment has
created a tremendous need for electronics technicians and others with some electronics background. To meet this need, a new Basic Electricity/Electronics Series has just been introduced by Howard W. Sams \& Co. Ii is a complete beginner's course, requiring no prior knowledge of electricity or electronics. More than 2 years in development by scme of the nation's most prominent electronics writers and educators, this is the first complete basic electricity/electronics textbook series to be published with the modern "programmed" format. Developed especially to meet the need for a training course geared for today's technology, the series is ur-todate not only in content but also in its method of presentation. The content of eac'l of the 5 volumes is presented in two-page segments, utilizing a modern, 5 -step "programmed" teaching process that is unequalled for use in schools, training programs, or for self-instruction. Five volumes ccver: Basic Principles and Applications; How AC and DC Circuits Work; Understanding Tube and Transistor Circuits; Understanding and Using Test Equipment; and Motors and Gen-erators-How They Work. The Course provides fundamentals required for progress in

> YOUR NEW COPY IS WAITING

FREE! For fun and pride in assembly, for long years of pleasure and performance, for new adventures in creative electronics mail the coupon below and get Conar's brand new catalog of quality do-it-yourself and assembled kits and equipment. Read about items from TV set kits to transistor radios . . . from VTVM's to scopes ... from tube testers to tools. And every item in the Conar catalog is backed by a no-nonsense, no-loopholes, money-back guarantee! See for yourself why Conar, a division of National Radio Institute, is about the fastest growing entry in the quality kit and

POCKKJTFTJI, -OFIPOWHER

NEW CADRE CONSORT

 FM WIRELESS MICROPHONEA complete, portable, wireless PA system when used with FM radio. Zero in the Consort on an open channel in the FM band with a special pushbutton tone signal-and talk. You've got a wireless short range FM transmitter effective up to 200 feet from the FM radio. 101 applications: public address, broadcasting, musical instrument pickup, etc. $\$ 44.95$

INDUSTRIES CORP.
COMMERCIAL PRODUCT DIVISION \square ENDICOTT N Y

BOOKMARK

many fields, including radio and television maintenance, radio communications, broadcast engineering, industrial electronics and electricity. This series presents an opportunity for up-to-date training at the lowest possible cost. Upon completion of the series, a student will have an understanding of modern principles and techniques normally attained only through supervised training programs at a far greater cost. The 5 -volume hard-bound edition in slipcase (ECS-50) sells for $\$ 24.95$, while the soft-cover edition ($\mathrm{ECY}-50$) is $\$ 19.95$. Individual volumes are $\$ 4.50$ each. For more information, write to Howard W. Sams \& Co., Inc., 4300 West 62nd Street, Indianapolis 6, Indiana.

Quicky Reviews. Being a bit tight on space this issue and long on reviews, your ol' Bookworm will list and comment on several recent issues that should not pass by unnoticed.

Essential Characteristics, a General Electric publication that is a mighty buy for its

low cover price of $\$ 1.50$. This vacuum tube directory tells you all there is to know about tube types currently in use in either new equipment or relics over 35 years old. You can pick up a copy at your local parts distrib-
utor or mail a check for $\$ 1.50$ to General Electric Company, Electronics Components Division, Owensboro, Kentucky.

Transistor Manual, another General Electric publication is more than just a directory of transistor types. It is a text packed with theory, application notes and circuits the experimenter can use in new construction

projects. Priced at $\$ 2.00$, this 652-page soft-cover manual is the publishing buy in the directory market. Copies can be had by writing to General Electric Company, Semiconductor Products Department, Electronics Park, Syracuse, New York. Be sure to enclose a check for $\$ 2.00$.

Electronics Data Handhook. by Martin Clifford is a book for the experimenter who frequently must call on technical data in the

province of the electronic technician and engineer. Price: $\$ 2.95$ for paperback edition. Order from Gernsback Library, Inc., 154 West 14th Street, New York, New York 10011.

Science Projects in Electricity/Electronics by Edward M. Noll is just what the title says it is-a compilation of practical experience projects with step-by-step instruction, demonstration, and sufficient theory to understand

Now! A clear, simple way to teach yourself ELECTRONIES

At last there's a simple, surefire way for you to learn basic electronics at home, in your spare time. That way is ELECTRO $*$ STUDY-a new, step-by-step selfteaching method that brings electronics within the grasp of everyone, regardless of experience or education.

Each ELECTRO * STUDY unit consists of a simply written, profusely illustrated textbook... and a programed Study Guide, with hundreds of questions and answers on material in the text. As you read the text, you review important points by referring to the Study Guide, so you remember them better. This frane-byframe method makes tough points seem easy. You really learn your. stuff!
Here are the 16 ELECTRO * STUDY urits ${ }_{r}$ each covering a vital area of basic electronics know edge:

E1 Electrons at Work

E2 Electric Circuits and Ohm's Law
E3 Magnetism, Electromagnetism-Wiring, Solcering
E4 Theory of Alternating Currents
E5 Direct-Current Networks
E6 Inductance and Capacitance
E7 Transformers in Radio and Electronics
E8 Motors and Generators in Electronics
E9 Resonant Circuits
E10 Radio Communications Fundamentals
E11 Vacuum Tube Fundamentais
E12 Batteries and Electronic Power Supplies
E13 Audio Frequency Ampliflers
E14 R-F Circuits
E15 Transistors and Their Applications
E16 Superheterodyne Receivers
Order as many of these units as you want-but order nowl Take advantage of the special introductory price of just $\$ 4.95$ each. Charter subscribers will receive, FREE, a handsome vinyl case for each Study Guide.

DON'T DELAY. FILL OUT THE COUPON NOWI
international educational services
Box 803, Scranton, Penna. 18515
\square Send me, postpaid, the ELECTRO * STUDY units circled below, at $\$ 4.95$ each. I enclose check (money order) for \qquad to cover full amourit.
\square Send me circled units COD. I will pay postage.
15-day money-back guarantee, either way.

E1 E2	E3	E4	E5	E6	ET	E8
E9 E10	E11	E12	E13	E14	E15	E16
Name						
Address						
City						
State				p Co		

OLSON ELECTRONICS INGORPORATED

332 S. Forge Street Akron, Ohio 44308

BOOKMARK

the principles involved. Covered in 128 pages are amplifiers, oscillators, FM tuners and antennas, and even electronic control circuits. Only $\$ 2.95$ from Howard W. Sams \& Co., Inc., 4300 W. 62nd Street, Indianapolis 6, Ind.

How to Clean, Maintain and Protect Records, a 16-page pocket guide on how to keep

your LP's in top shape while playing. Authored by Cecil E. Watts, this booklet can be had for 25¢ in coin from Elpa Marketing Industries, Inc., New Hyde Park, New York.

"I found him in the 'yellow pages'."

By Leo G. Sands

Radio-TV Experimenter brings the knowhow of electronics experts to its readers. If you have any questions to ask of this readerservice column, just type it on the back of a 4ל postal card and send it to "Ask Me Another," Radio-TV Experimenter, 505 Park Avenue, New York, New York 10022. The experts will try to answer your questions in the available space in up coming issues. Sorry, the experts will be unable to answer your questions by mail.

Q.Enclosed you will find some information on people that hear radio broadcasts through their heads, probably coming from fillings in their teeth. Can you furnish information on this subject?
-S. C., Coconut Grove, Fla.

A.Several weeks ago I recall hearing a radio interview program on my auto radio on which the guest admitted he started this myth and had a lot of scientists interested. However he said it was just a hoax.

Q.I have a Paragon RA-10 tuner with DA-2 detector-amplifier. Can you give me the approximate age? Where may I dispose of it to someone who would be interested in keeping it as an antique?
-O. L. S., Idalou, Texas

A.Your equipment was probably manufactured between 1920 and 1924. Unfortunately, too many precious examples of the most exciting radio era's receivers have already wound up in the garbage dump. In 1938, your equipment would have had a trade-in value of about one dollar. Today,

inquire about Electronics at MSOE

Planning your space age engineering education now, will enhance your career lates. Find out about MSOE programs in Electronics, Computers, and Electrical Engineering.

Obtain all the facts atoout courses leading to 4 -year Bachelor of Science and 2 -year Associate in Applied Science degrees. Find out about MSOE scholarships, financial aids, job placement opportunities, and other services.

Assure yourself of a bright future in the exciting field of space age engineering and technology. Write for your Free "Caree:" booklet which will tell you about educational advantages at MSOE.

its value is dubious. But, don't throw it away! Not long from now it may be valuable. Readers may know of individuals, museums or corporations that are collecting electronic artifacts and are invited to send their suggestions to the editor who will refer them to you.

Q.I live in an apartment over a store which has fluorescent lights as well as a neon sign, and I am getting very severe interference on my NC-105 short-wave radio on all four bands even with the noise limiter turned on. Can you suggest a remedy?
-R. S., Trenton, N.J.

A.Yes! Move! But short of moving you might get the proprietor of the store to install interference filters, such as CornellDubilier Type IF-24, on each lamp. They cost only 90 cents each. You might also try a type IF-8 (same make) at your receiver's power plug. But, chances are, the noise has to be stopped at the source.

Q.I have a Johnson Messenger II CB set I plan to use as a mobile unit and would like your "honest" answer on what is the "best" base antenna that money can buy, and your advice on what set to buy for use as a base station.
-V. S., Savannah, Ga.

A.The set you have has an excellent reputation and you might get another one to use as a base station. In picking a CB set, the important "number" to look for is the "watts output." They're all rated at 5 watts input. There are many excellent CB sets on the market ranging in price up to $\$ 350$ for a Poly Comm Sr 23. Which you buy depends on the features you want to pay for. New, important features to look for include a "selectivity filter" which minimizes adjacent channel interference.

There is no "best" base station antenna because there are so many good ones. Because of the size requirements at $27 \mathrm{Mc} / \mathrm{s}$, no omnidirectional CB antenna has appreciable gain, such as can be obtained in the higher frequency bands. Antennas in the "best" class cost upward of $\$ 25$. To get
the most power into the antenna, tune the set to it with a VSR meter, and use RG-8/U or even better coaxial cable such as one of the "foam" types. You may have to go to a professional two-way mobile radio shop to get foam type cable locally.

Q.I have constructed the TRF tuner de-- scribed in Radio-TV Experimenter No. 595, and it works OK except I get a lot of interference from stations on $1420 \mathrm{kc} / \mathrm{s}$ and $1480 \mathrm{kc} / \mathrm{s}$ when I tune in a weak (good music) station on $1450 \mathrm{kc} / \mathrm{s}$, which I want to listen to. What can I do?
-A. C. Brooklyn, N.Y.

Use Meissner part No. 14-1072 or equivalent for RF coils T1 and T2. Mica trimmer capacitors C1 and C2 are $25-280$ mmf. units like Lafayette part No. 34G6832.
A. A TRF tuner is good for music reproduction because of its ability to pass the whole radio signal. In your case, its selectivity, which is not as good as that of a superheterodyne receiver, is not adequate. You might try a shorter antenna or both a series and shunt wavetrap, connected as shown in the schematic diagram. One wavetrap is tuned to 1420 , and the other to $1480 \mathrm{kc} / \mathrm{s}$. Adjustment may be critical and some weakening of the $1450-\mathrm{kc} / \mathrm{s}$ signal might result because of the closeness of the frequencies.
Q. How long do I have to wait to get a license for a marine radiotelephone for my boat?
—L. R. V., Deerfield Park, Fla. Get a copy of FCC Form 501 from the nearest FCC office, fill it in and sign it,
and. if you are a U.S. citizen and have both a bo"t and a "type accepted" radiotelephone, you will be issued an "interim" ship license im: rediately to use while you wait the usual 60 days for your regular license. If you can read and write, and converse in English, you can get your Restricted Radiotelephone Operator Permit immediately without having to take an examination. But read Part 83, FCC Rules and Regulations, first.

Q.I have a 30 -watt audio amplifier which has speaker connections for 8 - and 16 ohm speakers. How can I connect a 3.2 -ohm speaker to it?
-T. E. Skillman, N.J.

Two 3.2-ohm loudspeakers in series can be connected across 8 -ohm terminations.

Simple method for connecting one 3.2-ohm loudspeaker to 8 -ohm terminals.

A.You can connect two 3.2 -ohm speakers in series across the 8 -ohm output. To use only one 3.2 -ohm speaker, you can connect a 5 -ohm 20 -watt resistor in series with one of the speaker leads. But, when the amplifier is delivering full-rated power, 18 watts will be lost in the resistor and there will be only 12 watts at the speaker. This is a loss of about 4 db in sound level. If the speaker is quite efficient, 12 watts may be adequate. But, you may be happier with the results if you get an 8 -ohm speaker.

need reliable service datu?

INDEX to PHOTOFACT ${ }^{\star}$

your instant handy guide to the

 WORLD'S FINEST ELECTRONIC SERYICE DATA
covers over 58,000 listings of:

- TV Receivers - Home \& Auto Radids
- Hi-fi\& phonos - Tape Recorders
- CB Radios - Record Changers

Send today for this valuable 78 -page guide covering virtually every model of home-entertainment electronic equipment produced since 1946! Helps you locate the proper PHOTOFACT Folder to quickly solve any service problem in any model. Available from your local Parts Distributor, PHOTOFACT provides everything needed for quick, effective repars in complete, uniform style: Famous Standard Notation Schematics packed with the service details you zeed; Full Photo Coverage of all chassis views; Complete Replacement Parts Lists; Tube Placement Diagrams; Adjustment Instructions; CircuiTrace ${ }^{(6)}$ for printed boards; Disassembly Instructions; Dial Cord Diagrams; Changer and Recorder "Exploded Views"plus dozens of other great features. Send coupcn for your FREE copy of the latest PHOTOFACT Index to the service data you need!

MAIL COUPON TODAY!

HOWARD W. SAMS \& CO., INC.

Depf. RT-2
4300 W. 62nd St., Indianapolis, Ind. 46206
\square Send me FREE Photofact Index to Service Data for over 58,000 listings
\qquad

Q.I am unable to locate a source of supply for the General Electric NE-77 neon lamp required in the Neon Switch Photocell Relay described in your FebruaryMarch 1964 issue. Any information you can give will be greatly appreciated.
-J. A. O., Camp Lejeune, N.C.
A. The G.E. NE-77 lamp is listed as Stock Number 7E952 and priced at $\$ 0.55$ each in the latest catalog of Allied Radio Corp., 100 N. Western Ave., Chicago, Ill. 60680.

Q.If you send a radio signal and it goes through space, will it still exist as long as it does not come in contact with something that would dissipate its energy, or will the signal dissipate itself eventually?
-G. F., Montreal, Canada

A.The width of a radio signal gets wider and wider with distance, even if it starts out as a narrow beam. The energy is therefore spread out, and as it spreads out its power is smaller within a given area. It would probably continue on forever, but the likelihood of its being intercepted by a radio receiver diminishes with distance and eventually the signal becomes so weak that it is lost in the noise generated in the receiver.

Q.Since there are so many pocket size AM and FM transistor radios, is it not possible to construct an FM pocket receiver that would be tunable from $30-60 \mathrm{mc}$ as well as from $60-90 \mathrm{mc}, 150-170 \mathrm{mc}$ and $450-470 \mathrm{mc}$ or an AM receiver tunable from $108-144.5 \mathrm{mc}$?

$$
-D . M ., \text { Chicago, Ill. }
$$

A. Yes, it would be possible, but it would require considerable design and con-
struction work to build a VHF or UHF pocket receiver that would be fairly sensitive, selective and stable. The FM broadcast channels in the $88-108 \mathrm{mc}$ band are spaced 200 kc apart and transmit signals that deviate $\pm 75 \mathrm{kc}$ when modulated. The VHF/FM communications channels in the $30-50 \mathrm{mc}$ band are spaced only 20 kc apart and the signals deviate only $\pm 5 \mathrm{kc}$. Thus, 10 of them could occupy the space taken up by one FM broadcast channel. Obviously, tuning would be much more difficult and selectivity would be a problem.

Block diagram of FM receiver for VHF reception. IF's are 10.7 mc . and 455 kc . from 1st and 2nd mixers.

Block diagram of AM receiver for reception in 118.134 mc . aviation band. IF's are 21.5 mc . and 1650 kc .

There are several receivers on the market which are fixed-turned to one or two selectable VHF communications channels and which employ crystal control. They are quite expensive ($\$ 200$ or more). Portable UHF receivers are also available, but they cost even more because the high frequency transistors are quite expensive.

There is no doubt that receivers could be built, such as you describe. The cost of

Anyone Can Build These High Quality Precision SEM Kits At a Substantial Savings

Precision Decade Resistance Box

Designed so the electronic experimenter can get any value of resistance at 1% accuracy. Made of precision components, this decade box offers such advantages as fast fingertip switching from any re. sistance value from 1 ohm to 1,111,110 ohms within sec. onds. Add or subtract as little as 1 ohm with 1% accuracy. And ordinary hand tools are all that's needed to assemble it in less than 2 hours.

AII Purpose Shop Tachometer
This tachometer is guaranteed to outperform any $\$ 50$ tach available today or your money will be refunded. This tach belongs in the tool chest of every machinist, electrician, model maker, motor serviceman and inventor. A six position rotary switch enables you to select three speed ranges in either forward or reverse rotation. Three ranges-0-500, 5000 and 15,000-cover the gamut of rpms in the home work. shop or laboratory on ma. chine tools, such as lathe cutting speeds, motor rpm, drilling speeds and other motor driven tools where rpm is an important factor.

Pocket-Size Hearing Aid

New hearing aid design provides a minimum of 42 decibels of gain and is adequate for 75% of all cases of par. tial deafness. The aid weighs only three ounces and is smaller than a king-size cigarette pack. Uses latest electromagnetic earphone and miniature crystal microphone. Powered by a 10% pen light flashlight battery and has a switch for turning power off when not in use and a control that lets you adjust the volume to a com. fortable sound level.

SCIENCE \& MECHANICS, KIT DIVISION

505 Park Avenue, New York, N. Y. 10022
Please send the S\&M kits that have complete asssembly plans, or the assembled and fully tested electronic aids checked below. I understand that if I am not completely satisfied I may return the kits within 10 days for a complete refund of the purchase price.

Hearing Aid		
Tachometer	$\square \$ 24.95$ Kit	$\square \$ 34.95$ Assembled
Decade Box	\square	

Add 10% for Canadian and Foreign orders. New York City residents add 4% for N.Y.C. sales tax.
NAME
(Please Print)
ADDRESS \qquad
sITY STATE ZIP

Check or money order enclosed, ship post paid.
\square Enciosed $\$ 3.00$ deposit, ship balance C.O.D., plus postage and C.O.D. charges.

ASK ME another

the design, when done professionally, would run to thousands of dollars. Nevertheless, it would make a fine project for an experienced experimenter and we would love to be the first to publish an article about it. (See block diagrams)

Q.How can I connect an electro-magnetic speaker as an extension to a PM speaker?

-L. B., Oliver, B. C., Canada

A.A typical electro-magnetic speaker has an impedance of 2000 ohms or higher whereas a PM speaker usually has an impedance of 8 ohms or less. If the electromagnetic speaker is to be connected directly to the radio or amplifier, one lead is connected to the plate of the AF power amplifier stage through an 0.5 mfd or 1.0 mfd paper capacitor, and the other lead to chas-

Here, the added sheaker is connected in parallel to amp's plate load.

Push-pull circuits present no problembe sure to use high-voltage capacitors.

An universal output transformer is the best method for matching an add-on loudspeaker. Adjust taps for best sound.
sis ground, or common ground buss, when the AF power amplifier is single-ended. In push-pull amplifiers, the speaker leads are connected from plate-to-plate across the primary of the output transformer with a 1.0 or 2.0 mfd paper capacitor in series with each lead.

To connect an electro-magnetic speaker to a PM speaker, instead of to the output of the amplifier, or to the voice coil output of and amplifier, an impedance step-up transformer is required. A universal output transformer is recommended since the impedance ratio can be varied. The speaker is connected to the primary (high impedance) winding of the transformer. The diagrams show how the various connections are made.

Q.I am using an inverted L antenna which is 60 feet long, not including the lead-in, and 40 feet above the ground. If I had a longer antenna would I get better reception? My receiver is a triple-conversion HQ-180A. Can I add a pre-selector or antenna turner?
—S. F. C., Oakland, Calif.

A.You have an excellent receiver which has excellent sensitivity and selectivity. Using a longer antenna in the metropolitan area in which you live will result in more medium frequency band signal pick-up, but it will bring you other problems. There are so many radio signals on the air in your area, and many of them powerful, that the front-end of you unusually sensitive receiver may be overloaded. There is no need for a pre-selector for your receiver. It will pick up radio signals from great distances as long as they aren't drowned out by noise which will be stronger if you extend your antenna.

NEW products

The fall New York High Fidelity Show heralded the coming of many new and varied products in the audio and high-fidelity market place. It is almost impossible to include all the products in this issue of Radio-TV Experimenter and, also, to give equal coverage to so many and varied areas of interest our diversified readership enjoys. So, for this issue only, the New Products column will be devoted entirely to high-fidelity products introduced during the second half of 1964. Because our space is limited, one product mention per manufacturer will be given, space permitting. In our next issue, the New Products column will return to its normal format covering the many fields for hobby electronics.

As an added service to our readers, all the listings in the New Products column are keyed (A1, A2, A3, etc.) to the coupon at the bottom of the Literature Library service feature on page 105 . If you wish to learn more about the products of several high fidelity manufacturers, it would be advantageous to use this coupon to contact them. Just circle the items on which you wish to receive information and data. We will do the rest.

Acoustica Lampshade Speaker System

Listen to high fidelity music from your lampshade! That's the latest idea for audio enthusiasts who want the combination of magnificent high fidelity sound and attractive living room decor. A Los Angeles electroacoustics company deeply involved in space programs, Acoustica Associates, Inc., has developed a dual purpose lamp-and-speaker which features sound actually radiating in a 360° pattern from the surface of what looks like a normal, elegant lampshade. Heart of the lampshade speaker is an almost weightless diaphragm which is free to move and thus create sound between two fixed electrodes in the form of closely spaced, concentric, wire-mesh cylinders. When covered with fabric, these cylinders become a trans-

SALE ON PAIBTS EITS:

ASSEMALE THIS ALL BAND BATIERY SFDRT WAVE RADIO FOR S9.951

LISTEN AROUND THE WCRLD-UP TO 12, OOO MILES AWAY! Ships, Aircraft, Voize of Amerlca, Russla, London, Australia. Amateur,
Citizens, Police, Also, USA Eroadcasi. WAVEBANDS. $1 /$ to 40 MC Croadcast Cinbrated ing dial. Wt, on y 3 Ibs.-NOW HEAR THE
WHOLE WORLD ALKING DAY OR NI THT: WHOLE WORLD ALKING DAY OR NI YHT!
SEND ONLY $\$ 2.00$ (Cash, ck, Mo.) and payy
portman $\$ 7.95 . C O D$ postage or send postman $\$ 7.95$ COD postaze or send $\$ 9.95$
for p.P. delivery. Complete Easic Kit as
shown. Free Bronicast Colland Plast Case shown. Free Bronicast Coll and Plastie Case
if you order now Available only from
Western Radio, Dept. BRE Western Radio, Dept. BRE
353B VHF REGEIVER
The $353 B$ receiver provides the shortwave listener coverage from 26 to 54 and 88 to 174 MC in eight calibrated bands. It copies AM and FM signals. Completely self-contained. Ready to plug in $\$ 59.95$
KUHN ELECTRONICS, INC.
1801 Mills Ave.
Norwood, Onio 45212

NEW
BOAT PLANS CATALOG

This heavily illustrated catalog of boat plans is made to order for every man interested in building his own boat. It gives full description of plans for building a wide variety of boats. Boat builders will be especially interested in the selection of full-size patterns now available on some of the most popular boats.
If you ever thought of building your own boat-you can't afford to be without this catalog. Order yours today.

SCIENCE \& MECHANICS-Craft Print Divîsion 505 Park Avenue - New York, N. Y. 10022

Enclosed is my 25c. Please send me a copy of the new Boat Plans Catalog No. 5.

Name
(Please print)

HEW producls

lucent lampshade of the finest quality. The lamp bulb and the speaker system operate independently of each other and can be used either simultaneously or separately. The

novel design of the lampshade speaker, which disperses sound from its entire surface area, eliminates the necessity of sitting in one specific place for perfect enjoyment of monaural or stereo programs. No longer is special positioning of speakers or chairs needed- 360° sound surrounds the listener with concert hall realism everywhere in a room. The lamp-speakers retail for $\$ 199.50$ up to $\$ 239.50$ each, depending on the model. (Acoustica Associates, Inc., Dept. 722, 5331 West 104th Street, Los Angeles, California 90045.)

Circle AI on page 105

Alard Tracking Error Indicator Tru-Trak

Tru-Trak, a device that shows visually the amount of "tracking error" in record players and positions the tone arm for optimum performance, has been developed by Alard Prodnets. Tru-Trak is a visual tool that eliminates the necessity of working with complicated calculations and difficult hairline measurements
in determining the proper mounting position for the tone arm. The use of Tru-Trak to read tracking error, according to the developer, makes it possible to achieve less distortion and greater fidelity with maximum stereo separation. The device consists of a pointer assembly that attaches to the cartridge and a calibrated scale that fits over the turntable spindle. As the tone arm is moved across the turntable, the pointer indicates visually, the tracking variations of the tone arm. By changing the mounting position of the tone arm, the increase or decrease in

tracking is readily apparent. The mounting position that produces the minimum amount of movement on the scale is the proper positioning for greatest fidelity with the particular tone arm and cartridge being tested. TruTrak is precision made from Lucite, fits standard cartridge mounting and can be installed in minutes--price is $\$ 6.95$ postpaid. (For more information write to Alard Products, Dept. TE72, Somerset, California. 95684.

Circle A2 on page 105

Allied Radio Solid-State FM-AM Tuner Kit KG-765

Allied Radio, makers of the Knight-kit line, have come up with a sure winner in their new all-transistor stereo FM-AM tuner kit, Model KG-765. Through its solid-state circuitry, the KG-870's 26 premium semiconductors offer realistic high-fidelity performance; virtually eliminate hum and extraneous noise; and account for the compactness of this unit (measures only $23 / 4{ }^{\prime \prime}$ high). They also provide absolute freedom from microphonics and mechanical noises and instant operation. The KG-870 develops a powerful 70-watt IHFM music power output- 140

watts of peak power-there are no output transformers or DC blocking capacitors in the output stage-reproduction is clean and pure. In addition, such Knight-Kit features as modular printed circuits and plugin transistor sockets assure fast, easy assembly. The KG-765's specifications are-Power Output: IHFM Music Power, 70 watts; 35 watts per channel; 140 watts peak. Continuous Sine Wave Power, 28 watts per channel. For use with 8,16 -ohm speakers. Frequency Response: $\pm 1 \mathrm{db}, 20$ to $25,000 \mathrm{cps}$ at rated power output. Distortion: Harmonic, 0.5%; IM, less than 1%; measured at rated power output. Hum Level: Tuner, -80 db ; Magnetic Phono, -68 db ; Tape Head, -60 db . Channel Separation: 40 db . Inputs: Tape Head (NAB); Magnetic Phono (RIAA); Tuner: Aux 1; Aux 2. Lists at $\$ 99.95$ for kit; $\$ 149.95$ wired. Brown metal case, $\$ 4.95$; economy wood case, $\$ 6.95$; de luxe wood case, \$12.95. (Write to Allied Radio Corporation, Dept. 2RT2, 100 N. Western Avenue, Chicago 80, Illinois for complete details.)

Circle A3 on page 105

Eico FM/MX-Stereo Tuner/Amplifier Model 3566

A new all-transistor FM-stereo/multiplex tuner/amplifier kit, which can be assembled by "beginners" as well as experts, had its first public showing at the New York high fidelity show late in September by EICO Electronic Instrument Co., Inc. Known as the EICO Model 3566, the new high fidelity instrument will be available in kit form for

$\$ 229.95$ and in factory-wired form for $\$ 349.95$ at the more than 2500 EICO distributors throughout the world. EICO officials declare that the Model 3566 is equal in performance and quality to tuner/amplifiers
"The meter is a marvelously sensitive and accurate instrument." u.s. camera

$\$ 3695$ in кit form

Here is a precision instrument that meets the highest standards of any meter available today. The S\&M A. 3 uses the newest cadmium sulfide light cell to measure light levels from 0 to 10,000 foot lamberts at ASA speeds of 3 to 25,000 . It is successfully used with movie or still cameras, microscope, telescope-as well as densitometer.
The computer gives F stops from . 7 to 90 and lists exposure time from $1 / 15,000 \mathrm{sec}$. to 8 hours. 43° angle of acceptance, 4 range selection; EV.EVS.LV settings. Large ($41 / 2^{\prime \prime}$) illuminated meter, paper speed control knob for use with enlargers and now has a new battery test switch.

- - - - - - - - - - - - - -

SCIENCE \& MECHANICS - KIT DIVISION To
505 Park Avenue / New York, N. Y. 10022
Enclosed is \$ \qquad Please send me the Supersensitive Darkroom Meter, as checked below. I understand that if I am not completely satisfied, I may reture the meter within 10 days for a complete refund.
\square No. A. 3
No. A. 3
in kit form - $\$ 36.95$ assembled - \$41.95

- $\mathrm{A}-3$ Carrying Case- $\$ 5.00$

Add 10\% for Canadian and foreign orders.
New York City residents add 4% for N.Y.C. sales tax.
NAME
(Please print)
ADORESS

HEW producls

selling in the $\$ 500$ to $\$ 600$ range. The model 3566 consists of an FM-stereo/multiplex tuner and amplifier on a single heavy-gauge aluminum chassis that can be mounted in a console or in an oiled walnut cabinet which is available for $\$ 9.95$ extra. Since no tubes are employed in either the tuner or amplifier sections, heating is minimized and no high voltage power supply is required. The tuneramplifier may be used independently with a pair of loudspeakers for FM stereo and mono radio reception. Input jacks are provided to enable use with a magnetic record player or changer and a tape deck. Output jacks are provided for connection to a tape recorder to enable the user to record FM radio programs. An output jack for stereo headphones is provided on the front panel. The all-transistor FM "front-end" and the four-stage 1F amplifier/limiter assemblies are furnished pre-wired and aligned with the kit, minimizing the time required to assemble the instrument. The factory-wired model, of course, is furnished ready to use. The instrument is designed for operation from 115 volts AC. It can be used on boats by providing a DC-to-AC inverter. (Complete specifications can be had by writing directly to EICO Electronic Instrument Co., Inc., Dept. 722, 131-01 39th Avenue, Flushing, New York 11352.)

Circle A4 on page 105

Electro-Voice FM-Stereo Receiver Model E-V 88

The first of several new product lines for Electro-Voice is their ultra-new E-V 88 FMstereo receiver. In addition to exceptional sensitivity and selectivity, the E-V 88 features fully automatic switching from monophonic to stereo reproduction without noisy mechanical relays or audible variation in tonal quality. Four IF/limiter stages are provided, each of which makes use of dual special-purpose transistors which provide balanced, symetrical limiting at each stage. An automatic stereo indicator light insures positive identification of stereo signals. A special inhibitor circuit prevents stereo indicator from being triggered by random noise between stations. An accurate zero-center tuning meter guarantees precise "on station"

tuning. Multiplex circuit is time switching type to provide inherent SCA rejection and insure minimum sensitivity to noise on weak stereo signals. The E-V 88 incorporates a total of forty-three transistors, seventeen in the tuner section and twenty-six in the amplifier section. Additionally, four silicon diodes are employed in the power supply. Extremely cool operation is accomplished by direct conduction of the small amount of heat from the output transistors to the unit's heavy base plate. All components are operated well within their rated temperature range, insuring long life and exceptional stability. The E-V 88 sells for $\$ 397.00$. (For more detailed information write to Electro-Voice, Inc., Dept. 72RT, Buchannan, Michigan.)

Circle A5 on page 105

Empire Elliptical Stylus Cartridge 880PE

Mr. Herb Horowitz, President of Empire Scientific Corp. has recently annouced the distribution of its new 880PE elliptical stylus cartridge and elliptical stylus replacement. The new Empire 880PE carries forth all the standard features of the "proven perform-

ance" 880 P, plus some new ones. Some of the important specifications for the 880PE are: frequency response, $8-30,000 \mathrm{cps}$; output voltage, 8.0 millivolts per channel; chanel separation, more than 30 db ; load impedance, 47,000 ohms per channel; weight, 10 grams; compliance, $20 \times 10 \mathrm{~cm} /$ dyne; tracking force, $1 / 2$ to 4 grams; stylus, $.2 \times .9 \mathrm{mil}$ bi-radial elliptical hand polished diamond; terminals, four-terminal output; tracking error, 15 degrees. The 88OPE sells for $\$ 29.95$ retail. When Empire introduced the 880 and 880P, they boasted it did away with obsolescence. In effect it has. Now every 880 or 880P owner can have an elliptical stylus by simply replacing its present stylus with the new replaceable 880PE elliptical stylus. The replacement stylus retails for $\$ 14.95$ (Empire Scientific Corp., Dept. E72, 845 Stewart Ave., Garden City, New York)

Circle A6 on page 105

Fisher Portable and Module Stereo Systems

Two new high-powered, transistorized Fisher stereo systems, designed to meet the rising consumer demand for better-quality compact systems, have been introduced by the Fisher Radio Corporation. The new systems, called the Fisher 50 Portable (see photo) and the Fisher 75 Custom Module, both have 30 watts of Music Power (IHF), and a highly

flexible set of audio controls including a 5position selector, dual bass and treble, balance, volume, and a front-panel headphone jack. Both systems have connections for tuner and tape recorder, and will play anywhere that AC power is available. The lightweight Portable consists of a Fisher 30 -watt master control amplifier and Garrard 4 -speed automatic turntable, plus two Fisher inductance speaker systems. The Portable has two 10 -foot cables for wide stereo separation. Only $233 / 4^{\prime \prime}$ wide, $8^{\prime \prime}$ high, and $141 / 4^{\prime \prime}$ deep.

RADIO-TV EXPERIMENTER
505 PARK AVENUE, NEW YORK, N.Y. 10022
Please enter my special 6 issue subscription to RAJO-TV EXPERIMENTER

\square I enclose $\$ 4.00$
[]. Bill me later

NAME
(Please print)
ADDRESS

CITY ____ _-_ _-_ STATE_________

BUILD YOUR OWN

BEATS WALKIN'. This tote-all scooter con be mode with an old bike frome and a used one-lung engine. Add a little expert scrounging and with less thon $\$ 40$ you can build one of these mile shrinkers for you ond the kids to zip around on. For weekend hunting or comping, you can carry it in your car trunk as far as your cor can go, then
 unload and take offl You can make this high-power, high-ratio sports version for off-the-road use, or with high power and low ratio, but without the load rack, and you have a fast street job.

No. 326 Beats Wakin'

SCIENCE \& MECHANICS-Craft Print Division

505 Park Avenue

New York, New York 10022
Please send me the following Croft Print No. 326 Beats Walkin'. My \$3 is enclosed.

the Fisher 50 Portable is about the size of a man's one-suiter, and is considered the perfect companion for music lovers who travel. The Fisher 75 Custom Module, identical in the electronics to the 50 , has two speaker systems that utilize larger 8 -inch woofers (compared to the Fisher 50 Portable's 6-inch woofer). The Fisher 50 Portable retails at $\$ 229.50$. The Fisher 75 Custom Module is \$269.50. (Fisher Radio Corporation, Dept. 22E, 21-21 44th Drive, Long Island City 1, New York.)

Circle A7 on page 105

Harman-Kardon All Transistor FM-Stereo Receiver Model SR 300

The industry's first all-transistor FM stereo receiver line, extending frequency response both above and below the audio spectrum, has been developed by Harman-Kardon, Inc. The least expensive unit in the line is the Model SR 300 receiver. The SR300 is allsolid state, using no vacuum tubes, not even nuvistors, yet sold at a price comparable to vacuum tube units. A wide range of frequencies, including sub-sonics and ultrasonics are handled by the receiver at natural relative amplitudes and with a freedom from distortion not previously available. The en-

tire response is flat from minimum listening levels to full 75 -watt music power, and there is no phase shift or crossover distortion. Har-man-Kardon engineers, with the help of the transistor, have designed the SR300 to reproduce inaudible frequencies as low as 8 cycles per second and as high as $25,000 \mathrm{cps}$, and have demonstrated that the full impact of stereo is experienced only when these outer frequencies are brought into play. The 36watt SR300 receiver has front-panel controls
for high and low cut, contour, off-on and volume, treble and bass, speaker balance and program selection. Stereomatic circuit switches automatically between monaural and stereo. Bandwidth at full power is 10 to $23,000 \mathrm{cps}$; frequency response at normal listening level (1 watt) is 8 to 25,000 $\mathrm{cps}(\pm 1 \mathrm{db})$; and harmonic distortion is less than 1.0 per cent. Dimensions are $141 / 8$ inches wide, $41 / 2$ inches high and $93 / 4$ inches deep. List Price: $\$ 279.00$. (Complete specifications on the SR300 receivers as well as other receivers in the line are yours for the asking by writing directly to Harmon Kardon, Inc., Dept. 7RTE, 15 th \& Lehigh Avenue, Philadelphia, Pennsylvania.)

Circle A8 on page 105

Lafayette 70-Watt AM/FMStereo Receiver LR-800

Those of you who read the Lab Check of the Lafayette LA-226C stereo receiver in the last issue of RADIO-TV EXPERIMENTER will be glad to know that a pepped-up model, the LR-800 has replaced it. The LR-800 is a self-contained unit incorporating many deluxe features such as a tuneable nuvistor

front end giving 1.5 microvolt sensitivity for 20 db quieting. A "Stereo Search" circuit identifies a multiplex station with a tone signal through your speakers. The tuner section achieves a multiplex separation of 37 db at 400 cycles and a frequency response from $50-15,000 \mathrm{cps} \pm 1 \mathrm{db}$. The amplifier produces 35 watts per channel with harmonic distortion at 1%. Hum and noise is -55 db at low level and -80 db at high level inputs. Correct equalization is provided for RIAA phono and NAB tape head inputs. Output impedances are switch selected at 8 and 16 ohms and include a front panel stereo headphone jack. Input selector controls access to AM. FM, FM MPX. Phono, Tape Head, and Auxiliary music sources. The LR-800 utilizes 24 tubes, 9 diodes and 1 selenium rectifier and is enclosed in a handsome case with
(Continued on page 35)

NEW products

(Continued from page 32)
contrasting gold extruded aluminum panel. Its dimensions are $17 \mathrm{~W} \times 57 / 8 \mathrm{H} \times 14^{\prime \prime} \mathrm{D}$, and its Lafayette stock number is $99-0005 \mathrm{WX}$. The LR-800 is priced at $\$ 199.50$-only $\$ 10$ more than its predecessor, the LA-226C. (For more information write to Lafayette Radio, Dept. E22, 111 Jericho Turnpike, Syosset, New York 11791.)

Circle A9 on page 105

Olson Electronics 4-Channel Preamplifier-Mixer Model RA-637

A new all-transistor preamplifier-mixer, Olson's Model RA637, may be used as a straight preamplifier for mike or magnetic phono cartridge or, to mix up to four input signals from high or low level sources. All inputs require standard RCA phono type connectors. All inputs require standard RCA phono type connectors. Each of the four inputs is equipped with a selector switch for high or low level signals along with individ-

ual volume controls permitting you to blend and mix the signals as you wish. Model RA-637 comes equipped with VU meter and master gain control plus bass and treble tone controls. The preamplifier's gain is 65 db , -30 db on the low level position. The unit is powered by six standard penlight batteries included with the purchase. Size: $10^{\prime \prime} \mathrm{W} x$ $21 / 4^{\prime \prime}$ H. x $63 / 8^{\prime \prime}$ D. The preamplier-mixer sells for $\$ 39.98$. (For more information write to Olson Electronics, Inc., Dept. WW22, 260 South Forge Street, Akron 8, Ohio.)

Circle BI on page 105

Roberts 1600 Series Designer Tape Recorders

The tape recorder with its radio-room knobs and switches has been given a face lifting
by Roberts Electronics. Their new Designer Line, the 1600 Series has fewer controls and what there are are dressy and slim of line. These are placed in a Burmese gold face and in turn nested in elegant walnut and vertical panels of grill cloth. They are table models that sit well alone, wall mounted or recessed flush. Recorder functions were simplified. The complicated nature of recording has been minimized. The Roberts 1600 Series has a unitized construction. Components are mounted on a single metal chassis. Shipping stability and resistance to jarring are increased. Easier internal access is provided and maintenance problems reduced. Roberts

1600 Series features are: 3-digit tape counter, automatic shutoff, individual chanrel stereo VU recording meters, simplified channel volume controls and tone control, two coaxial stereo speakers, tape speeds of $33 / 4$ and $71 / 2$ IPS with optional 15 IPS kit available, 4-channel stereo or monaural record and playback including stereo phono/radio inputs. Frequency response is 30 to 18,000 CPS at $73 / 4$ IPS. Signal-to-noise ratio is better than 45 db . Bias oscillator frequency is 95 KC . (Complete specifications and pricing information is available by writing Roberts Electronics, Dept. 722, 5922 Bowcroft St., Los Angeles, Calif. 90016.)

Circle B2 on page 105

H. H. Scott Solid State Tuner/Amplifier

The new Model 344 solid state FM-stereo tuner amplifier has been added to the $H . H$. Scott line of quality hi-fi components. The 344 combines the features and performance of the finest Scott stereo tuners and amplifiers in a unit comparable in size to an ordinary tuner. The tuner section of the 344 includes a silver-plated four-nuvistor front end for 2.2 uv sensitivity (IHF) with 80 db cross modulation rejection. Flat line limiting

NEW products

makes the 344 impervious to ignition pulse noises and overloading caused by strong local stations. The stereo multiplex section utilizes Scott's solid state Time-Switching multiplex circuitry to capitalize on the superior switching capabilities of transistors. Separation is in excess of 35 db . Automatic stereo switching is accomplished by means of exclusive Scott Auto-Sensor circuitry, a computer-like device which compares the incoming signal with a fixed noise signal. If the incoming signal includes only noise, Comparatron stays in the monophonic mode. If a 19 kc multiplex pilot is present, the Auto-Sensor instantly and silently switches to stereo. The solid state amplifier stage of the 344 delivers a conservative 25 watts music power per channel into an eight ohm load, but the tremendous reserve peak power of transistors

assures even better performance in actual use. Massive heat sinks assure conservative cool operation. Additional features of the 344 include: compensation network which automatically boosts extreme highs and lows when volume is reduced, to give full range of sound at any selected volume; noise filter to reduce objectionable noises from scratchy records or poor broadcasts; front panel lowlevel output for connection of stereo earphones; flywheel-balanced, ball-bearing mounted tuning knob for smoothness of operation; and separate Power On-Off switch so that all front panel controls may be left in normal operating position. Price, east of the Rockies, is less than $\$ 430.00$. (For further information or specifications, write: H. H. Scott, Inc., Dept. P72, 111 Powdermill Road, Maynard, Mass.)

Circle B3 on page 105

Sherwood Solid-State Integrated Amplifier

Power, fidelity, and operating reliability never before available in a compact, integrated
amplifier-preamplifier are now offered in Sherwood Electronics' new S-9000 all-silicon solid-state stereo amplifier. This trim $14^{\prime \prime} \mathrm{x}$ $4^{\prime \prime} \times 12 \frac{1}{2}{ }^{\prime \prime}$ deep component delivers 150 watts of music power. Peak power for the S-9000 is 300 watts, while the continuous sine-watt power rating is 100 watts or 50 watts per channel with both channels operating at the same time. Because of its cool operation, it is ideal for the most confined custom installations, even at full power. There are no limitations as to mounting position, including mounting with the knobs up. Power band width at 1% distortion is superb, from 12 cps . to $23,000 \mathrm{cps}$, Harmonic distortion at the continuous power

rating is less than $1 / 2 \%$. At normal audio levels the distortion never exceeds 0.15%. Sensitivity for rated output is: phone 1.8 millivolts, tapehead 1.0 millivolts, and tuner 0.25 volts. Maximum noise and hum below rated output: phono -70 db ., and tuner -80 db . Output circuits are transformerless, direct coupled through low-loss 3000 microfarad capacitors. The output handles speaker systems with impedance ranging from 4 to 16 ohms. The $\mathrm{S}-9000$ provides complete front panel controls for every input and output function. The controls include: a selector for tape head, phono tuner, and auxiliary inputs; a stereo-mono mode selector; bass, treble, loudness, and channel balance, phono level; switches for tape monitoring, hi and lo filters, loudness compensation, phasing and speaker on-off. A separate stereo headphone jack is provided for private listening. Price of the S-9000 is $\$ 299.50$ for the chassis. A separate wood-grained walnut leatherette-on-metal case is available at $\$ 8.50$ to enclose the chassis for table top use. West Coast prices are $\$ 302.50$ and $\$ 8.50$ respectively. (Sherwood Electronic Laboratory, Inc., Dept. R22, 4300 North California Avenue, Chicago, Illinois 60618.)

Circle B4 on page 105

Shure Stereo
 Dynetic Cartridge M55E

A new 15 -degree elliptical stylus cartridge
developed especially to complement the wave of new, light tracking automatic turntables now breaking on the high fidelity scene has been announced by Shure Brothers, Inc. Called the M55E, the new unit is designed to operate at tracking forces of from $3 / 4$ to $11 / 2$ grams, well within the tracking capability range of most of the new, higher-priced automatic turntable models currently being introduced. Heretofore, the use of elliptical stylus cartridges was reserved for light-tracking manual turntables because an elliptical stylus tracking in excess of $11 / 2$ grams can cause serious record wear. Used within the proper $3 / 4$ to $11 / 2$ grams range, however, an elliptical stylus offers definite performance advantages over a conical stylus, with no increase in record wear. The performance advantages are obtained by reducing IM, harmonic and tracing distortion. The M55E incorporates an elliptical stylus assembly as does the finest Shure cartridge, the Model V15. The primary differences between the M55E and the V-15 are physical construction details and the fact that the M55E is constructed under standard quality control procedures rather than the extremely rigid

test procedures developed expressly for the Model V-15 and its Master Quality Control Program. Development of the stylus assembly for the new M55E cartridge also pro-
vides owners of Shure Model M44 conical stylus cartridges an opportunity to upgrade their systems. If they have turntables capable of tracking in the $3 / 4$ to $11 / 2$ grams range, they can get performance comparable to the M55E by simply purchasing and using an N55E replacement stylus in their M44 ca:tridge. Some of the important specifications for the M55E are: frequency response, 20$20,000 \mathrm{cps}$; output voltage, 6 millivolts per channel at $1,000 \mathrm{cps}$ at $5 \mathrm{~cm} / \mathrm{sec}$.; channel separation, over 25 db at 1.000 cps ; channel balance, within 2 db of each other; load impedance, 47,000 ohms per channel; tracking force, $3 / 4$ to $11 / 2$ grams; stylus data, . 0000 inch frontal radius and .0002 -inch side contact radius. Price of the Model M55E ca:tridge with elliptical stylus is $\$ 35.50$. Cost of the N 55 E replacement stylus alone is $\$ 20.0$. (Shure Brothers, Inc., Dept. RT-22, 222 Hartley Ave., Evanston, Illinois.)

Circle B5 on page 105

Sonotone Bookshelf Speaker System Model RM-1

Here is a compact speaker system introduced by Sonotone that permits the audiophile to utilize a limited amount of space by installirg an entire stereo speaker system on a bookshelf without sacrificing speaker quality because of size. The Sonomaster RM-1 is designed with two speakers, a 6 -inch flexiblesuspension, linear-type, high-compliance woofer and a high-frequency tweeter. The tweeter offers excellent high-frequency dispersion evenly over a wide angle. The small tweeter is equipped with a calibrated level control which permits each listener to adjust the highs best suited to his personal taste. The speakers are acoustically matched ty means of an integrated crossover networt. The RM-1 offers wide high-frequency dis-

NEW producls

persion, smooth frequency response, wide frequency range and low distortion. Impedance is 8 ohms, response is 45 to 20,000 cycles per second, crossover frequency is at 5,000 cycles per second. The Sonomaster

will handle all music and voice passages from their true beginning. Feed a fine quality signal into the RM-1 and it will reproduce every detail, whether it be loud or soft-the system adds no coloration. The RM-1 can also handle power-it takes 40 watts of average program material (80 watts peak). It has been tested with over 100 watts of program material for short periods of time. To take advantage of the loud passages in an average size living room, a power amplifier rated at 10 watts is the recommended minimum to be used with the system. The RM-1 measures $14^{1 / 2^{\prime \prime}} \times 10^{1 / 2} 2^{\prime \prime} \times 71 / 4^{\prime \prime}$ deep. It's finished in attractive hand-rubbed oiled walnut. It carries a consumer net of $\$ 42.50$. (Information is yours for the asking by writing to Sonotone Corporation, Dept. 22RT, Elmsford, New York.)

Circle B6 on page 105

Thorens Plexiglass
 Dust Cover and Base

A rich, hand-rubbed walnut base is combined with a wood-paneled plexiglass dust cover in
a new "showpiece" hi-fi cabinet announced by Thorens. The new cabinet, Model CAB, was created after consultation with leading furniture and musical instrument manufacturers, and fits both traditional and contemporary decor. The plexiglass and walnut cover is designed to balance in an open position without hinges or other hardware, and may be lifted from the base without disconnecting fittings. Incorporated into the dust cover base is a new triple isolation method of minimizing effects from extraneous shocks and vibrations. Each base includes a set of pliant rubber damping grommets said to offer five times the resiliency of older grommets. They provide a "floating cushion" on which the turntable "floats." Another set of grommets is provided to afford complete isolation of all moving parts. Each base carries a genuine hardwood tag, signifying its certification by the Fine Hardwoods Association. Overall dimensions are $20^{\prime \prime}$ wide x $16^{1 / 4} 4^{\prime \prime}$ deep x $71 / 2^{\prime \prime}$ high. The base and dust

cover are available in several model styles, $\$ 40.00$ for the CAB-124/121 designed for use with the TD-124 and TD-121 turntables. The distributors of the Thorens base and dust covers informs us that almost any manual turntable can fit into the base. All that is required is to discard the original pre-cut base board, replace it with a board of equal outside dimensions to mount the turntable you now own, paint the base board black and you're all set to install your unit. Record changers with tall center posts cannot be accommodated by the dust cover. (More information can be had by writing to Thorens, distributed by Elpa Marketing Industries, Thorens Div., Dept. RT22, New Hyde Park, New York.)

Circle B7 on page 105

Whitecrest Stereo Preamp/Amp Model APS-100

By eliminating obsolete features and employing orthodox, proven circuitry, premium parts, and meticulous manufacturing, Whitecrest Industries, Inc. has designed a new stereo integrated control amplifier that offers the consumer a combination of both firstrate quality and economy. Attractively packaged in a grained oil walnut cabinet, the Whitecrest Model APS-100 reflects design features usually found in professional equipment. The use of massive output transformers, employing grain oriented laminations, insure full rated power, down to 10 cps . The six silicon rectifiers and the oversize power transformer, all operating at a fraction of their individual ratings, provide the superb voltage regulation essential for fullrange, distortion-free reproduction. Stereo music power output (IHFM, both channels) is 60 watts. Each channel has individual bass and treble controls, permitting accurate compensation for room acoustics and different program matcrial. A separate loudness con-

tour control provides the proper compensation for low level listening. Additional specifications for the Model APS-100 are: peak power output (both channels), 100 watts; music power output (IHFM, both channels), 60 watts: power output (RMS, per channel), 27.5 watts; harmonic distortion (at rated output), . 25%; intermodulation distortion (at rated output), $.75 \%$; hum and noise level, 80 db below rated output; frequency response, $10-20,000 \mathrm{cps} \pm 1 \mathrm{db}$; sensitivity (for rated output), 300 mv (high level inputs), 3.5 mv (phono input), 2 mv (tape input); output impedances, 4-8-16 ohms; tube complement: 4-7591, 4-12AX7, 212AU7, 6 -silicon diode rectifiers; bass and treble control range, -15 to +15 db ; power requirements, 117 volts 60 cycles. Price, \$1'59.95. (Whitecrest Industries Inc., Dept. R22V, 1085 Manhattan Ave., Brooklyn, New York.)

Circle B8 on page 105

THE TRUCK

 THAT FLIES!

> This amazing, new high-speed vehicle can do 40 mph on land and 35 knots flying over the water! It can carry a fiveton load or take on combat troops for amphibious assault operations! It's the latest addition to the U.S. Marines' arsenal of modern weapons, and you can read all about it in the

MARCH

SCIENCE E MECHAN/CS

on sale January 28th

"Until just recently, I have been somewhat skeptical about low-priced transistor amplifiers. However, after testing and listening to the Heath AA-22, I feel it is time to revise my opinion."

Heathkit ${ }^{\circ}$ 40-Watt Transistor

Mr. Hirsch Went On To Say: "This remarkable amplifier can easily hold its own against any amplifier tube or transistor - anywhere near its price range. It is the embodiment of the so-called 'transistor sound' - clean, sharply defined and transparent. It has the unrestrained effortless quality that is sometimes found in very powerful tube amplifiers, or in certain transistor amplifiers. The AA-22 is almost unique among amplifiers at or near its price, since it delivers more than its rated power over the entire range from 20 to 20,000 cps ... The power response curve of this amplifier is one of the flattest I have ever measured... Its RIAA phono equalization was one of the most precise I have ever measured. . . Intermodulation distortion was about 0.5% up to 10 watts, and only 1% at 38 watts per channel, with both channels driven .. . The hum and noise of the amplifier were inaudible . . . Hi Fi/Stereo Review's kit builder reports that the AA-22 was above average in 'buildability'... In testing the AA-22, I most appreciated not having to handle it with kid gloves. I operated it at full power for long periods, and frequently overdrove it mercilessly, without damage to

Stereo Amplifier
the transistors, and with no change in its performance measurements. One of the best things about the Heath AA-22 is its price, $\$ 99.95$ in kit form, complete with cabinet."

About All We Can Add is that the AA-22 has complete controls; 5 stereo inputs to handle mag. phono, stereomono tuners, tape recorders, \& 2 auxiliary sources; $4,8 \& 16 \mathrm{ohm}$ speaker outputs; plus tape recorder outputs. It weighs in at 23 lbs . for shipping, and it's delivered direct to your door.

Oh, Yes, One More Thing! There's a matching AM/ FM/FM Stereo tuner that performs just as well for the same price.

Kit AJ-33A, matching tuner, I7 lbs............ $\$ 99.95$

FREE 1965 CATALOG!
See these and over 250 other exciting Heathkits available in easy-to-build kit form. Save 50% or more by doing the easy assembly yourself! Send for your free catalog today!

HEATH COMPANY, Dept. 19-2
Benton Horbor, Michigon 49023
In Canada: Daystrom, Lid., Cooksville, Ontario
\square Enclosed is \$ \qquad , plus shipping.
Pleose send Kit(s)
\square Pleose send Free 1965 Heothkit Catolog.
Name \qquad
Address
City \qquad State \qquad Zip
Prices \& specificotions subject to chonge without notice. HF-179R

EXPLORIING THE NEW

Under The Sea

Electronics in oceanography

probesaworld of mysteryand

opportunity hidden on the

ocean's bottom under 350

million cubic miles of water

again with the safety of land travel.
Designed to travel an 80-mile range of the ocean's floor at 3.8 knots, Aluminaut is built to stay submerged as long as 72 hours, carry a crew of three downstairs, with a passenger list of fifteen. Packed with electronic gearranging from underwater television, to sonarsounding systems, two-way radio and mechanical arms primed to reach out and grasp handfuls of the bottom of the sea-the silver ship may well pioneer the day when man may fully explore the seas.
J. Louis Reynolds, Chairman of the Reynolds Metals Company launched the historic submersible with the words, "Beneath the 350 million cubic miles of water sprawled across three-quarters of the earth's surface is a great untapped storehouse of natural wealth." Rich stores of manganese, cobalt, gold, diamonds, vanadium, sulphur, iron, oil, nickel lay under the sea. Vast supplies of food that could nourish starving peoples of nations plagued by exploding populations, wait only to be farmed.

Fifty-foot Aluminaut, above left, is about to be slapped on hull in a welcome by the sea for which she was born. Aluminaut, built by General Dynamics' Electric Boat Division, will be run by Woods Hole Oceanographic Institution in a research program exploring ocean floor, 60 percent of which is in reach (left). Now, less than 10 percent has been reached. Above, Westinghouse sonar photo of a square mile of sea's floor 8400 feet down, shot 300 feet from bottom. Center line is ship's path.

Massive Underwater Platforms. Defense experts warn too, that free nations can at any time be Pearl-Harbor'd from massive underwater missile "platforms." Yet until the recent electronic "giant awakening" man has almost totally lacked the implements to deal with the powerful watery environment around him. For centuries, the oceanographer frustrated along with the crudest of tools.

Aristotle peered over the side of the boat in the shallow waters of the Mediterranean, studying marine life, and decided some fish were animals.

Bottles and Buckets. Centuries later, Benjamin Franklin with only a bucket, a bottle and a thermometer, discovered the Gulf Stream. Naval Officer Matthew Fontain Maury in the early 1800 's charted winds and tides from logbooks, studied the seas and concluded animal populations lived in underseas "cities" separated by mountain ranges and ridges.

England's H. M. S. Challenger steamed down the Thames in 1872 to spend three-and-one-half years travelling the world, established oceanography as a science with only a bottle, cable, wire and dredges to work with.

As Director James M. Snodgrass of the Scripps Institute, LaJolla, California, pictures the plight of the harassed oceanographer: Imagine shrinking the Pacific Ocean down to a lake ten miles across. On this scale, the ocean's maximum depth would correspond to 60 feet. Then place a toothpick on the lake. The toothpick by scale would represent the oceanographic vesiel which we use. Take a filament finer than the finest spider thread to represent the cable the oceanographer would lower to sample the ocean bottom, and then try to plumb this fine thread to the 60 -foot depth.

Picturing it this way it is easy to comp-ehend why for centuries the mysteries of the seas have always Garbo'd man. Until recent

Lockheed, despite their research into the exiting underwater realm of the future, must still ply the surface of the ocean with the conventional craft of today.

ACF Electronics' hydrophone, above, detects sound in deepest parts of the sea. ACF velocimeter, left, will indicate undersea weather conditions.

Under The Sea

threats of war, food and mineral shortages spurred American engineers to fashion new electronic "bottles and buckets."

We See the Sea With Sound. Westinghouse engineers "photograph" the landscape of the bottom of the sea, with its hills and valleys, with an electronic "photographer" 12 feet long, weighing 1500 pounds, they tow along under a mother ship, 200 to 400 feet above ocean bottom at depths down 20,000 feet.

Two sets of sonar transducers reach out 1200 feet on each side to scan the ocean floor with high-frequency sonar. Each sonar line "sees" a strip of the floor 2400 feet long, four feet wide, transmits its rebounding "lines" to the vehicle, where the high frequency waves are reconverted to electrical signals, amplified, and fed by cable to the surface ship in parallel lines, much as the television picture is reproduced. The "lines" are then permanently registered on a moving roll of sensitive paper.

To Spot Internal Waves. Lockheed engineers track giant hidden undersea wavessome more than one-hundred feet tall-by building a wall of thermistors. Stationed 400 , 500,1900 and 2000 feet below the surface, these electronic "buckets" connect by cable to a recording van on the nearby shore. Temperature and time readings are transmitted to shore every five minutes, signals converted to numbers, printed by a recorder, the data then fed to a computer to predict the wave's intentions. Reason for keeping a sharp eye on these truants is they can throw off a wellbehaved wave of sonat.

Another underwater bad-boy, the tidal wave, speeds at 500 to 600 miles an hour under the ocean's surface, can pass right undership, escape detection until it bursts full fury ashore to havoc an unsuspecting town or island.

To detective these destructive characters, Bendix men place a transponder on the ocean floor that can detect a true tidal by pressure change, transmit an alarm to a surface buoy to relay its message by radio to a station ashore. When not chasing tidals, this Bendix "bottle" records water temperatures, salient content, current velocity and direction.

Sounds Under the Sea. To keep tabs on
submarines underseas, Lockheed engineers designed an underwater "tracking" system, placing three hydrophones two miles apart to pick up sound signals under 3600 feet of water, which are then amplified and transmitted to computers ashore. The smart computer then reconstructs the signals, knows where the sub is heading.

ACF Industries engineers shape another oceanic snooper like a cigar, prime it to listen 37,000 feet underseas, through the lower half of its 27 -pound hydrophone "boot" which ACF men fill with castor oil. Reason

Honeywell deep-water hydrophone is capable of operation at pressures up to 2500 pounds/ sq. in. Frequency response is $5-50,000$.

Honeywell $5-1000-\mathrm{Al}$ buoy is powered by nickel-cadmium batteries for 6 -month operation at ocean depths up to 5,000 feet. The unit is fully compatible with present day low-cost, data-collecting telemetering gear.

for the oil, they say, is that it has the same acoustical or sound transmission properties as water.

This One Tells It To The Skies. Honeywell's buoy $\mathrm{S}-1000-\mathrm{A}-1$ scouts tides, temperatures and sea sounds, transmits what it hears to ship or plane overhead. Weighing 200 pounds, the Honeywell listener converts frequency analog inputs of attached sensors to digital form, records data on magnetic tape with a readout rate of 100 bits per second. Honeywell engineers say they can space their buoys over oceans much like a mammoth game of checkers to report deep-sea findings to aircraft flying overhead tuning in with data receiver-processors.

Another Honeywell buoy, TM-1-A, reads ocean temperatures at eight fixed, pre-established depths on a single vertical station at set times, records temperature readings on $35-\mathrm{mm}$ photographic film. Frequency of readings can be set at $1,2,3$, or 4 an hour, each buoy living a "lifetime" of 1600 readings.

The Ocean's Moods. But to master the oceans in our lifetime, some top scientists believe we must "occupy" the oceans, not simply study them. To comprehend the ocean's moods and whims, we must send

Artist's conception at left shows Aluminaut in its undersea environment. Searchlights illumilnate ocean bottom for its television camerat. Below left, an artist's conception shows the Deepstar, a 3 -man deep sea vehicle that will dive 12,000 feet to explore earth's last frontier equipped with sample collecting mechanical arms. Below, Lockheed's flying saucer-like Turtle searches out sunken cargo in craggy peaks of undersea mountairs.

Alvin, a deep submergence research vehide, is a tool of Woods Hole Oceanographic Institution. Chubby sub can cruise 20-25 miles.
ships down through the seas that can 'see" lower levels, probe these depths with a whole series of observers to follow Aluminaut.

Chubby Alvin, product of Litton InJustries, is built to Lewis-Clark the oceans at the 6,000 foot level, cruise a range of 20 to 25 miles at a top speed of $6-8$ knots, look around with sonar-scanning eyes, clusedcircuit TV and first-hand port-hole observation by its pilot and crew.

Under The Sea

Sink To The Depths With Deepstar. While Alvin and Aluminaut openly admit their ancestors were submarines, the Westinghouse dreamboat looks more like a whale. Built to pull some fast maneuvers at depths of 12,000 feet, Deepstar will prop one of its crew in tilted seat, the other two lying prone on the floor to peer through four-inch thick plexiglass windows to observe the seas around them.

Turtle Is Round. Lockheed's contribution to pioneering underseas exploration looks like a turtle. The brainchild of Dr. Willy Fiedler, one of the Polaris fathers, Turtle is designed one day in the future to ferry pas-
(Continued on page 129)

Vehicle above, designed and built by JacquesYves Cousteau, explores shallow reef. Below, "arm" for undersea recovery holds millstone.

> A message from... SENATOR WARREN G. MAGNUSON

The ocean is an ever-changing and demanding environment. To understand it, to exploit its vast living and mineral resources, and eventually to master the sea, the scientist and engineer must have tools. These range from miniaturized sensing elements to complex buoy and sonar arrays; from fantastically accurate intertial navigation systems to orbiting oceanographic satellites. The federal government must look to the capabilities and experience of American industry to design, develop and build the new ocean-electronics systems so vital to the National Oceanographic Program. But to meet this exciting challenge we need a new breed of specialists: Men capable of understanding the sea's complex, dynamic features and processes; men willing and able to apply our already advanced terrestrial and space technology to fathoming the ocean's deep frontiers. As Chairman of the Senate Commerce Committee and as a consistent champion of theoceanography effort, it is obrious to me that the future of our entire program depends in large measure on ocean-electronics. The opportunities are there in the 350 million cubic miles of salt water covering thisplanet. A vigorous, industry-wide effort will capture these opportunities.

TRANSISTOR CHARACTERISTICS CHECKER

ONE SCOPE TRACE TAKES ALL GUESSWORK OUT OF TRANSISTOR CHECKING By D. Ross Duffel and Heny A. Schneidem

Whether you're a serviceman, experimenter, technician, or engineer, you've often needed a quick and reliable way to determine a transistor's condition, or its characteristic curves for am amplifier design. The Transistor Characteristics Checker is the unit that will do the trick.

One picture is worth a thousand meter readingsthis Checker is used with an oscilloscope to give both a quick visual check of the tran-

Schematic diagram of Transistor Checker shows switching for checking PNP or NPN transistor.
sistor and a display of its characteristic curves. In addition to checking and displaying design curves, the unit, costing less than $\$ 25$ to build, can be used to match pairs of inexpensive transistors. This will save purchasing a costly matched pair.

The schematic diagram shows how the voltages for obtaining the collector characteristic curves are tapped off at external jacks to be connected directly to the oscilloscope. The collector characteristics obtained correspond to the common plate current-plate voltage curves for vacuum tubes. Indications of leakage, current gain, output impedance, best base current for linear operation, and an indication of maximum allowable collector voltage are revealed by the curves.

Theory of Operation. The transistor under test receives a pulsing DC voltage representing a wide variation of operating conditions. As we know from basic transistor theory, a given base current will make a larger given amount of current carriers avail-
able to the reverse biased collector-to-emitter circuit. Only a small amount of collector voltage is needed to attract the available carriers, after which an increase of collector voltage results in very little collector current increase. The result is a characteristic curve similar to a vacuum tube pentode plate characteristic.

To obtain the characteristic curve, the Checker provides a variable base voltage as well as the pulsing DC collector voltage. The voltage applied between the collector and emitter circuit is seen along the oscilloscope's horizontal axis. The collector current is on the vertical axis. Therefore the collector voltage and current information are given directly in the characteristic curve. By varying the base current, a family of average collector characteristics can be obtained.
The Circuit. A half-wave filtered source of DC or a battery in series with a microammeter is used for the variable base supply; and a diode in series with a filament type
transformer is used for the collector supply. A ganged, three-section DPDT switch reverses the vertical oscilloscope connections and collector and base polarity for testing either PNP or NPN transistors. The oscilloscope trace is deflected vertically by the amount of the drop of the collector current due to 100 -ohm resistor R2, and horizontally by the applied voltage between the collector and emitter.

Putting It Together. The chassis layout is not critical and components you have on hand can be used if others are changed to maintain circuit parameters. For example, if you have a 6 -volt transformer, it can be substituted for 2.5 -volt transformer (T2) provided you change potentiometer RI to 2 megohms and R4 to 10,000 ohms at $1 / 2$ watt. In this case use a 6 -volt battery in place of 1.5 -volt battery (B1). Diode D1 should pref-

[^0]Estimated cost: \$23.00
Estimated construction time: $\mathbf{4}$ hours

Oscilloscope trace, running from left to right, indicates the transistor under test is a PNP.
erably be a silicon diode of 500 ma . and 200 PIV, minimum, since a silicon diode will have the least forward drop. Either a silicon or selenium diode is acceptable for diode D2 since the forward drop and PIV are not critical.

Transformer or Battery. The transistor characteristics checker shown in the photographs was wired by the authors using a s.p.s.t. switch for S3, the Battery switch, connected only to cut the line voltage from transformer T2. The battery was then temporarily clipped into the circuit to provide base voltage. In the schematic diagram, however, a wiring is shown that may be preferred. Battery switch S3 is a d.p.d.t that places the battery, rather than the transformer, in the circuit when it is in the On position. There is plenty of room in the chassis for a battery holder, or, as an alternative, jacks J4 and J 5 can be placed on the back panel of the unit for an external connection. A more readily available sloping panel cabinet can be used in place of the uniquely shaped cabinet shown.
When the wiring is complete, check all connections to ensure that base and collector polarities are correct.

Using the Checker. To test a transistor, connect the vertical, horizontal, and ground leads to your oscilloscope and adjust the vertical gain of the scope for .1 volt per centimeter, or .1 volt per $1 / 2$ inch for low current transistors and 1 volt per division for high

Inside view shows arrangement of components; sloping cabinet is treated similarly.
current transistors. These settings will eliminate annoying double trace and prevent off screen readings. Set the horizontal control to the external position and adjust the gain to allow 9 volts to cover an appreciable portion of the screen. Turn off both base and collector power and insert the transistor leads in the test socket, or use the three external test clips to connect the transistor. Turn on the base voltage and determine which position of the NPN-PNP function switch allows the greatest current flow. This determines whether the transistor is PNP or NPN, and if base-emitter section of transistor is good.

Transistor characteristics curves such as these become immediately recognizable and don't require detailed analysis to determine the

All components and wiring is on front panel so back of the cabinet can be removed freely.

Low power transistors should have current flow only one way through the base-emitter diode section. Power transistors should have a somewhat lower resistance in one direction at a higher base current. If the base section is shorted or is very leaky, current flow will be equal in both directions indicating that the transistor is defective. After determining the forward current direction, set the base current low, about 50 to 100 microamperes, and then turn on the collector power. The curve will appear on the oscilloscope as the base current is increased.
(Continued on page 132)

information they contain. They are discussed in detail in text for various types of transistors and effect of oscilloscope gain on their shape.

new breed of audio equipment
is sounding off this seasonthe stereo compacts. These new units are hardly bigger than ordinary table phonographs, yet their performance comes within hailing distance of the kind of fidelity found only in full-size equipment. Some of these new compacts are so cleverly designed that the complete stereo system-record changer, stereo amplifier, and two detachable speakers
-fit into a single portable case no bigger or heavier than a man's two-suiter. Other models, intended for nonportable home use, come finished in walnut.

The compacts are a brave try to fill the wide gap between standard-size sound components and the garden-variety type of portable or table-model phonograph. Most of them are priced below the regular range for component systems. They are evidently intended for customers wanting better sound than ordinary phonographs provide, but who haven't got the cash or the space for a fullsize stereo system.

The sudden swing to compacts was the big
surprise of the recent High Fidelity Show in New York. Manufacturers like Fisher, Scott, Shure, KLH, and Electro-Voice, who in the past had been turning out sound equipment strictly in the Cadillac class, were suddenly trotting out a bunch of bantans that might be called the Volkswagens of audio.

This trend opens up several quéstions:
. . . Why are top rank firms now making compacts when they didn't do it before?
.. . How good are the new bantam systems?
. . . Should you buy one or stick with traditional big components?

To answer these questions we must look at

STEREO COMPACT COMPARISONS

Make and Model	Type	Dimensions (Inches)	Weight (Pounds)	Power (Watts/ Channel)	ChangerType
KLH 11	1-piece luggage-style	$24 \times 14 \times 7$	28	15	Garrard (Special design w. lowmass tone arm)
KLH 11-W	Home-style Walnut	Changer \& Amp $18 \times 14 \times 8$ Speakers $14 \times 81 / 4 \times 8$	-	15	Garrard (Special design w. lowmass tone arm)
Fisher 50	1-piece luggage-style	$243 / 4 \times 141 / 4 \times 8$	35	15	Garrard AT6
Electro-Voice Entertainer'1	2-piece luggage-style	Changer \& Amp $16 \times 201 / 2 \times 9$ Speakers $16^{3 / 4} \times 17 \times 57 / 8$	$341 / 2$	15	Garrard AT6
Fisher 75	Home-style Walnut	Changer \& Amp $241 / 2 \times 145 / 8 \times 51 / 2$ Speakers $161 / 4 \times$ $103 / 8 \times 91 / 8$	53	15	Garrard AT6
Scott Stereo Compact	Home-style Walnut	Changer \& Amp $241 / 2 \times 15 \times 81 / 4$ Speakers $14 \times$ $83 / 4 \times 55 / 8$	-	no data furnished	Garrad AT6
Benjamin Stereo 200 with Benjamin 208 speakers	Home-style Walnut	Changer \& Amp $18^{1 / 2} \times 16 \times 91 / 2$ Speakers $213 / 4 \times$ $11^{1 / 2} \times 8^{3 / 4}$	-	18	Miracord 10
Shure M-100L	2-piece luggage style	Changer \& Amp $20^{7 / 8} \times 15^{5 / 16} \times 83 / 4$ Speakers 207/8 x $191 / 4 \times 14$	56	20	Dual 1009
KLH 20	Home-style Walnut or Mahogany	Changer, tuner \& Amp $181 / 4 \times 14 \times 4$	-	40	Garrard (Special design w. lowmass tone-arm)
Shure M-100W	Home-style Walnut	Changer \& Amp $11 \times 21^{1 / 2} \times 16$ Speakers $101 / 4 \times 21 \times 83 / 8$	-	20	Dual 1009

Cartridge	Remarks	Price
Pickering Magnetic	Tuner \& tape recorder inputs and headphone jack provided	199.95
Pickering Magnetic	Tuner \& tape recorder inputs and headphone jack provided	209.95
Pickering Magnetic	Tape recorder, tuner inputs and headphone jack provided	229.50
E-V Ceramic	No tuner or tape inputs	235.00
Pickering Magnetic	Tape recorder, tuner inputs and headphone jack provided	269.50
Pickering Magnetic	Tuner \& tape inputs provided; room for optional FM stereo tuner in enclosure. Tuner: $\$ 129.00$ additional.	299.95
Elac Magnetic	Tuner \& tape inputs and tape output jacks provided. Other speakers may be substituted.	328.50
Shure V-15 Magnetic w. elliptical stylus	Tuner inputs and microphone jack provided. Other speakers may be substituted.	389.00
Pickering Magnetic	FM stereo tuner included, zero-center tuning indicator, stereo indicator light, tape inputs and outputs, headphone jack, built-in antenna, external antenna optional.	399.95
Shure V-15 Magnetic w. elliptical stylus	Tuner inputs and microphone jack provided. Other speakers tinay be substituted.	450.00

the roots of this new development. Of course. portable or table-model stereo sets have glutted the market for years. They crowded the shelves in department stores, discount houses and appliance stores. But you'd rarely see one in a bona-fide high-fidelity shop; for nearly all of them were bass-shy, their 1reble shrieked, and when you turned up the volume they piled up enough distortion to make the silkiest string orchestra sound like a bunch of sandpaper kazoos. No wonder any true hi-fier sneered at this kind of portable or table-model record player. Even audio engineers partly accepted the notion that small photographs necessarily had to sound tinny and screechy. As a whole, the high fidelity industry stayed away from portable or tablemodel designs.

Cigar Box Speakers. But then one firm upset the applecart. About two years ago, KLH Research and Development Corporation of Cambridge, Massachusetts, came up

with its Model 11-a completely self-contained stereo system in a single piece of luggage, weighing all of 28 pounds. The two detachable speakers hardly seemed bigger than a generous cigar box. Yet to eve:yone's amazement, they gave forth with clear, fullbodied sound that would do credit to a loudspeaker many times their size. And to top it off, the whole rig sold for less than $\$ 200$.

At first. KLH was suspected of witcheraft.

Stereo Compacts

But audio engineering, like any other science, can't hold a secret for long. When the competition ripped apart the Model 11 and pried into its inards, they discovered the trick for getting big sound from small speakers. KLH had done it by matching the frequency response of the amplifier to the exact requirements of the speaker. Instead of designing the amplifier with flat frequency response, they put some extra wallop in the low end to make up for the weak bass of the tiny speakers. The amplifier response curve zigs where the speaker response curve zags. In the end you wind up with an accoustically flat output that gives every note its due despite unavoidable speaker deficiencies.

This isn't the same as just turning up the bass boost. For one thing, amplifier and speaker response have to be exactly intermatched. The kinks of the amplifier response curve must dovetail accurately with the kinks of the speaker response curve, or else the sound gets boomy. Besides, the small speakers have to be fitted with hefty magnets and high-compliance cone suspensions so that the voice coil can travel freely back and forth over a fairly long stretch of piston travel. This enables the small speaker to accept the powerful thrusts of beefed-up bass without tearing to shreds or breaking into distortion. And because of the longer piston travel of the cone, the speaker pumps more air with each stroke, allowing even a small speaker to stir up enough air fior effective bass projection.

The problem was to keep speaker motion exactly proportional to the amplifier signal over the whole length of the extended cone travel. A new technique of speaker design had to be developed to accomplish this. Finally KLH came up with a three-inch speaker that covered the entire musical range with a nice, round bottom and a whistle-clean top-at least at moderate power levels. But for proper performance speaker and amplifier had to be literally made for each other.

What Price Compactness? Once KLH had pioneered this method of getting bass without bulk, others were quick to follow. Today there is an ample choice of compact stereo systems ranging from less than $\$ 200$ to more than $\$ 400$. Yet the difference in sound between them does not seem as great as the difference in price. (Some non-hi-fi

compacts sell for lesst than $\$ 190$, but their performance cannot be compared to the units discussed here.)

Even the lowest-priced units in the current crop of compacts deliver the kind of sound that would have seemed impossible in equipment of this size only a short time ago. In terms of sheer dollar value, the units selling around $\$ 200$ rate as exceptional bargains. Only a kit builder assembling his own amplifier and speaker can hope to get more performance per dollar invested than some of these ready-wired units offer. As yet no compacts come in kit form, probably because of extremely tight construction tolerances.

What accounts for this breakthrough in quality? Partly it is the intermatching of speakers and amplifiers pioneered by KLH. Partly it is the general knowledge gained within the past two years in the design of small speakers. But the overriding factor in the development of today's compacts is the growing sophistication of transistor circuitry. It is at last possible to design extremely small amplifiers with high reliability, low distortion, and sufficient power output. The elimination of output transformers save both weight and bulk. To make the most of the miniaturiza-
tion possibilities inherent in transistor circuits, some compacts-notably KLH and Benjamin-spread the amplifier circuitry all around the base plate of the record changer, tucking it under next to the turntable motor. The result is a complete stereo amplifier measuring only about two inches in height.

Finally, transistor amplifiers, if properly matched to the speakers, keep very tight control over the excursions of the speaker cones. This provides more accurate speaker damping than was formerly attainable with small amplifiers. Thanks to these excellent damping characteristics of the amplifier and the extra-heavy speaker magnets in some of the better models, the tiny speakers can be driven at fairly high power levels without distorting. By carefully combining all these design factors, engineers were finally able to come up with clean, balanced sound in extremely small equipment.

Despite variations in individual design, the new compacts bear a certain family resemblance. They all are built around high-quality record changers which can also be used conveniently for manual playing of single records. They all use modern high-compliance cartridges (mostly magnetic) tracking at stylus pressures of about two grams-an important factor in lengthening the life span of records. They all come equipped with a diamond stylus. Most of them provide inputs for other program sources, such as stereo FM tuners and tape recorders. For details about individual models, see the feature comparison chart.

How do they sound? That, after all, is the ultimate touchstone of any radio system. As a group, the compacts do a lot better than anyone would normally expect from equipment that size. Granted, the lowest reach of the bass fiddle and the pedal notes of the organ won't come through with powerful conviction. But there is adequate mid-bass and the over-all balance of highs and lows is quite pleasant. Best of all, at moderate volume levels, the character of the individual instruments is remarkably true and lifelike. In comparison to ordinary phonographs the improvement in tonal quality is downright dramatic.

Yet the maufacturers of the new compacts are the first to admit that their new bantams aren't meant to rival or replace full-size sound systems. Chief drawback of many compacts is their low power-handling capacity. The limiting factor here is not the amplifier. At anywhere from fifteen watts to twenty watts
per channel the amplifiers actually put out more power than the little speakers can comfortably handle. As you turn the volume control beyond the two o'clock position on some of these models, the speakers get overdriven in heavily orchestrated passages. W ien a symphonic fortissimo comes along, they tend to blur. But lighter orchestrations, such as jazz or pop arrangements still come through clean and undistorted even at fairly high volume levels.

So if you want to shake the walls with symphonic thunder, the compacts are not for you. But less demanding kinds of music are admirably reproduced, especially in mod-erate-size rooms where you don't need to crank up the volume.

The various compact medels now on the market differ somewhat in their ability to handle power bursts such as orchestral slimaxes or crashing piano chords. It's a good idea. therefore, to try out several competing makes before making a final choice. Bring along your own stereo record for comparison testing. A well-recorded symphony

Stereo Compacts

or piano concerto will give the various systems a tough workout. Differences will show up very clearly at fortissimo passages.

Bigger Bantams. The compact trend in audio parallels the compact trend in cars. No sooner had the first compact cars come off the line than Detroit immediately started making bigger, beefed-up compacts with more powerful engines and snappier performance. The same thing is happening right now in the audio industry. The latest entries are two "super-compacts" designed to provide the convenience of a fully self-contained compact system without the twin drawback of small speakers and their power limitation,

such as the Shure M-100L and M-100W, the Benjamin 200, and the KLH Model 20. The last three are intended for permanent home installation rather than portable use and therefore come in walnut cases. Their speakers are larger and the amplifiers heftier than those of the more compact compacts. The KLH-20, for instance, packs forty watts per channel-almost three times the power of most smaller compacts. This kind of power reserve would be ample even in a full-sized system. What's more, the speakers reach down comfortably to the lowest notes of the musical scale and can take a full orchestral blast without shattering. Besides, the KLH20 contains a highly sensitive built-in stereo

tuner at almost no increase in size.
The Benjamin 200 and the two Shure models differs from most other compacts in that they don't tie you down to just one type of speaker. Their amplifier output is "flat"not tailored to the requirements of one particular speaker. Almost any fairly efficient speaker can therefore be conected if you don't happen to like the speakers normally furnished with these systems.

The new compacts, coming completely preasembled, are a boon for the wire-shy folk who like the idea-of a sound system they can just plug in and play. Apartmentdwellers who can't give house-room to a fullsize system will value the compacts' ability to cram the most sound in the least space. And of course, luggage-style compacts are a natural for footloose hi-fi fans-college students, weekenders, baby sitters and party-goers-who want to lug good sound in a suitcase.

$10-80$ RECEIVER

This 2 -tube regenerative detector rig will tally a score of stations

By Homer L. Davidson

Here is a nifty little receiver that tunes the ten- to eighty-meter short-wave bands by switching a single-wound tapped coil into a regeneration detector circuit. Actually, the receiver uses only two tubes, but one is the 6D10 compactron that contains three separate triode sections. The 6D10 combines several functions in a single glass envelope. Space is saved by using only one tube instead of a possible three. This economy in parts not only saves space but money as well. The compactron, relatively new on the market, does a real job in this short-wave circuit. The first triode section is used as an RF amplifier, the second as a
regeneration detector, and the third as the first audio stage.

The cost of the $10-80$ short-wave receiver is around $\$ 30.00$. However, surplus pa:ts from previous projects can be used to grea:ly reduce this cost.

Circuit Description. The antenna lead in is capacity coupled to the cathode of an untuned RF triode stage control grid tied directly to ground. This stage isolates the loading circuit between the regeneration detector and the outside antenna.

The Detector. This stage amplifies the RF/ audio signal. Current flows through the cathode into coil L2 and to ground. Coil L2

Tuning coil L2 can be wound using this pictorial view as a guide. No.' 28 enameled wire is used for all three sections. The turns for each section are spread to cover one inch of the tube. With coil C, the turns will be touching when 30 are wound to the inch.
is tuned to one frequency which depends on the setting of C4 and C7, and the setting of S1. S1 selects portions of L2 that are needed to tune in a particular band, whereas the capacitors resonate those selected sections at a desired frequency. L2 behaves like an autotransformer and steps up the cathode signal and supplies it back to the control grid of the detector stage. Here is where the regenerative feature takes place. The stage would oscillate unless its gain were reduced. That is the function of the regeneration control R3. By lowering the potential applied to the plate of the detector, the gain for the stage can be controlled. Resistor R2 and Capacitor C6 team up to form a grid leak detector network for providing bias for the triode section and converting the RF signal into pulsed audio.

6D10 Audio Amplifier. Capacitors C7 and C8 with RFC choke L3 combine to serve as a pi-network to filter the audio signal supplied to the third triode section of the 6D10.

This first audio section incorporates a variable resistor, R5, in the plate circuit which serves as a plate load and also the receiver's volume control.

Following the first amplifier in the circuit is headphone jack J1. Sufficient signal is present here to drive a pair of phones. When the phones aren't plugged in, the audio signal is capacity coupled to the final audio stage and to a four-inch speaker. The output transformer is tied in the high end of the power supply for greater voltage resulting in more amplification.
Power Supply. The power supply is a conventional half wave rectifier using a silicon diode. A low priced power transformer with 125 - and 6.3 -volt secondaries isolates the AC from the chassis ground. The s.p.s.t. on-off power switch is connected to the volume control, R5. In addition to the two tube filaments, jeweled pilot light I1 is connected to the 6.3 -volt secondary.

Coil Toil. The tuning coil is actually one

The aluminum chassis is visible when looking into the top of the sloping panel cabinet that houses the receiver. Most of the components, aside from the front panel variable controls and switches, are mounted on the 7 " $\times 5$ " chassis.

coil wound in a single layer on a plastic tube $3 / 4$ inch in diameter. Coil A has a total of 9 turns of No. 28 enameled wire tapped at the 8 th turn for terminal 2 that goes to the cathode circuit. Coil B has a total of 12 turns tapped at the $10 \frac{1}{2}$ turn. Coil C of the 40 to 80 meter band is 30 turns tapped at

the 28 th turn. The total number of turns of the coil is 51 . All three coils are spread to a length of one inch on the coil form. This results in the last coil with the turns almost touching or close wound.

When winding the coil, one end should be held in a vise for easier winding. Start at terminal No. 1 and wind 8 turns and then scrape back the enameled wire insulaticn. Wrap a short piece of wire around the scraped spot and solder the connection. Continue one more turn and do the same thirg. This completes coil A. Do not cut the coil wire but wind 12 more turns to cover a full inch on the plastic tube. The last coil is also done in the same fashion. Place coil dope over the windings or scotch tape will hold the windings in place.

Sloping face of the cabinet holds the speaker, band switch $S 1$, and band spread capacitor C5, which is vernier controlled for fine tuning.

After the coil is wound, turn switch S1 to coil position No. 1. Take terminal 2 and wire to the cathode section. Solder terminal 3 to the ground section of the switch. The other two coils are hooked to the switch as the first one. Wire up the switch completely before mounting to the front panel. This leaves only the cathode and ground tap to be soldered after the switch is mounted. The same No. 28 enameled wire can be used for the tap hookup wire or flexible hookup wire could be used.
(Continued on page 128)

Schematic diagram of receiver shows wealth of circuitry encompassed by 12 -pin Compactron.

10-80 RECEIVER PARTS LIST

C1—. 001 -mf., 300-volt ceramic capacitor
C2-.001-mf., 300 -volt ceramic capacifor
C3-5-mf., 300-valt ceramic capacitor
C4-140-mf. miniature variable condenser (Hammarlund APC-140B)
C5-15-mf. miniature variable condenser (Hammarlund MAPC-15B)
C6-. 0001 -mf. silver mica capacitor
C7-.001-mf., 300-volt ceramic capacitor
C8-. 005 -mf., 300 -volt ceramic capacitor
C9-.01-mf. ceramic capacitor
C10-25-mf. subminiature electrolytic capacitor, 25 -volts (Lafayette CF-143 or equiv.)
Cll-02.-mf., 400-volt paper capacitor
C12, C13, C14-Three-section twist-prong capacitor, $20-\mathrm{mf}$. @ $25 \mathrm{v}, 30-\mathrm{mf}$. @ $150 \mathrm{v}, 70$ mf. @ 150 v (Allied 19 L 301 or equiv.)
C15-. $003-\mathrm{mf}$., 300 -volt ceramic capacitor
DI-Silicon power rectifler $750 \mathrm{ma}, 200$ PIV @ $25^{\circ} \mathrm{C}, 500 \mathrm{ma}, 200 \mathrm{PIV}$ @ $90^{\circ} \mathrm{C}$ (Lafayette SP-197 or equiv.)
11 -Indicator lamp assembly with red jewel and 6.3 -volt lamp ILafayette PB-106 and PL-39 or equiv.)
J——"Little-Jax" phone jack lLafayette PJ-59 or equiv.)
LI-Rf-choke, 2 microhenries
12-51 turns No. 28 enameled wire wound on $3 / 4$-inch form
L3-75 turns No. 28 enameled wire wound on $1 / 4$-inch resistor form
R1—330-ohm, $1 / 2$-watt resistor
R2—3,300,000-ohm, $1 / 2$-watt resistor

R3-100,000-ohm linear-taper control
R4-27-ohm, $1 / 2$-watt resistor
R5-50,000-ohm logarithmic-taper control with s.p.s.t. switch

R6-470,000-ohm, $1 / 2$-watt resistor
R7-220-ohm, $1 / 2$-watt resistor
R8-1500-ohm, l-watt resistor
R9-22-ohm, 1-watt resistor
51-2-gang, 6-pole, 3-position rotary switch (Lafayette SW-281)
Tl-Power transformer, Pri: 117 vac, 60 cycle -Sec: $125 \mathrm{vac}, 50 \mathrm{ma} ; 6.3 \mathrm{vac}, 2$ amperes (Lafayette TA-305 or equiv.)
T2—Fixed output transformer, Pri: 3000 ohms -Sec: 3.2 ohms. Pwr: 3 watts (Lafayette TA-19 or equiv.)
V1-Compactron tube 6D10
V2-6AS5 beam power tube
1-_Sloping panel cabinet, gray hammertone, $61 / 2^{\prime \prime}$ h. $\times 11-1 / 16^{\prime \prime}$ w. $\times 7-7 / 32^{\prime \prime}$ d. (Bud $\mathrm{C}-1586 \mathrm{HG})$
1-Open-end aluminum chassis $1 \frac{1}{2 \prime} \times 7^{\prime \prime} \times 5^{\prime \prime}$ (Bud CB-30)
1-4" square PM speaker
Misc.-Line cord, antenna wire and insulators, terminal strips, coil dope, tube sockets, insulated hookup wire, spaghetti rubber grommets, grill cloth, solder, pointer knobs, dial plates, vernier dial, panel marking decals, nuts, bolts, etc.

Estimated cost: $\$ 30.00$
Estimated construction time: 12 hours

Alow cost transistor operated as a reverse biased diode is the sensing element in the home-made, direct-reading, electronic thermometer described in this article. Designed for use in a photographic darkroom, the thermometer's non-linear expanded temperature range of $50^{\circ} \mathrm{F}$ to $85^{\circ} \mathrm{F}$ gives instant meter temperature indication of solutions used to develop and process black and white and color photographic films and papers. One important design feature of the device is that battery aging has almost no effect on the accuracy of the direct-reading darkroom thermometer.

Circuit Operation. Sensing element transistor Q1, (refer to schematic diagram) is series connected with meter MI and dry cell hattery B1. As required for a pup transistor, the collector lead (c) connects to the negative terminal of the battery. The base lead (b) is not used. Resistor R2 is a se-
lected meter shunt. Transistor Q2, resistor RI, and battery B2 comprise a current limiter. The current limiter protects the meter from damage due to excess current by limiting the current when the temperature of QI is well above $85^{\circ} \mathrm{F}$.

In this circuit, meter MI indicates the reverse bias collector-emitter leakage current Iceo of Q1. Leakage curnent Iceo is very sensitive to temperature but relatively insensitive to the voltage of battery Bl. This in shown in Iceo vs. Vc graph which shows leakage curves at $60^{\circ} \mathrm{F}$ and $85^{\circ} \mathrm{F}$. When battery B 1 is fresh and has a voltage of 1.5 volts, loadline X, which establishes the trarsistor operating points, is located at 1.5 volts as shown. The meter currents are established by intersection points A and B. As the bat tery ages and drops to one wolt, the loadline shifts laterally to Y at 1 volt. But the meter currents at points C and D are only slightly

Darkroom Thermometer

Schematic diagram of the darkroom thermometer shows action of switch S1. It is a D.p.s.t. that removes both batteries from the circuit.
less than those at points A and B respectively although the battery voltage has dropped by thirty-three percent.

Construction. Connections shown in the diagram are for $p n p$ transistors. If $n p n$ transistors are used, reverse the battery polarities. General purpose rf-if transistors were used as they were on hand and obtained as surplus. Transistor Q1, selected as later detailed, has a current gain of about two hundred. Transistor Q2 has a current gain of thirty and is not critical as to gain.

Mount all parts excepting Q1 in a small meter case. A bakelite board mounted on the meter supports Q2, R1, R2, and the batteries. Insulate phone jack J1 from the metal meter case. The current is not grounded to the case.

Transistor Q1 is selected to find one which has sufficient collector to emitter leakage current Iceo at $85^{\circ} \mathrm{F}$ to deflect M1 to full scale. To select Q1, set up a warm water bath at $85^{\circ} \mathrm{F}$ as shown in detail test diagram. The test tube prevents wetting of the transistor. Make temporary twisted wire connections with the transistor leads and tape. Connect the collector and emitter lead wires to the test circuit (see diagram) and measure the leakage current at $85^{\circ} \mathrm{F}$. When making this test, stir the water and allow five or, ten minutes to stabilize temperatures and meter indications. If the meter indication seems erratic and wavers back and forth, the transistor is unsuitable for use as Q1.

Select a transistor having a leakage current falling between 50 and 200 microamperes. If the selected unit has a leakage current between 50 and 100 microamperes, meter M1 should be a 50 microampere movement. Otherwise, use a 100 microampere meter. Record the measured value of Iceo for later use in calculating resistor R1.

In selecting the best transistor for use as a temperature sensor, a VOM is used to find the transistor with optimum leakage current.

With Q1 in the $85^{\circ} \mathrm{F}$ water bath, remove the VOM and replace it with the meter to be used. Most likely, the meter will be deflected off-scale. The meter is brought to or near full-scale deflection by means of shunt resistor R2. To determine the value of R2, temporarily connect a potentiometer across the meter terminals and adjust it until the meter reads at or near full-scale. Remove the adjusted pot and measure its adjusted value to determine the value of R2. In some cases, R2 may not be required. R2 may be in the form of an adjustable pot incorporated in the circuit if desired.

Depending on the meter to be used and the leakage of Q1, resistor R1 is calculated from Ohn's law using $R=E / I$. To find R1 (in ohms), simply divide 1 volt (the end
(Continued on page 129)

The variation in collector-emitter leakage current of transistor with changing battery voltage and temperature is shown in curves above. Decrease in current between the $1.5-$ and 1 -volt points is negligible whereas the current difference with temperature is great.

Darkroom thermometer components fit comfortably in a meter case. Note the bakelite mounting board is held by meter terminals.

PARTS LIST

B1, B2-1.5-volt penlite cell (Burgess Z cell or equiv.)
Jl-Phone jack (H. H. Smith 75 or equiv.)
M1—Dc meter, $0-50$ microamperes ITriplett M series or equiv.)
Pl-Phone plug (H. H. Smith 222 or equiv.)
Q1, Q2—Rr-if transistor, general purpose, see text (Allied Radio 39 A642 or equiv.)
R1-See text
R2-See text
S1-S.p.s.t. toggle switch
1 -Meter cabinet (Bud CMA-1936 or equiv.)
1 -Dual penlite cell battery holder, or two single units (Keystone 140 or equiv.)
Misc. $-3^{\prime \prime} \times 4^{\prime \prime} 1 / 16^{\prime \prime}$ Bakelite perforated strip, flea clips, 3 -feet lamp zip cord, hardware, epoxy, etc.

Estimated cost: $\$ 8.25$
Estimated construction time: 3 hours not counting epoxy curing time

Meter deflection is recalibrafed in ${ }^{\circ} \mathrm{F}$. Lead for Q1 can be cut to any convenient length.

Experimental setup for selecting the best transistor and calibrating the meter in ${ }^{\circ} \mathrm{F}$.

Transistor Q1 is completely encapsulated by applying duro epoxy to it in successive layers.

Beating the path back from Slumbersville can be made in waltz time with a miniature electric carillon

By Leon A. Wortman

Itf you dislike being awakened by a raucous, buzzing alarm, or don't want to risk the shattering sounds of a brass band on the clock radio, but prefer to be awakened gently each morning, this project is for you. It can be built by adding only three components to a commercially available electric alarm clock. Neither the wiring nor the mechanism of the clock need be modified, nor is it necessary to have any components external to the clock.

Neat Package. Most clock and timer mechanisms come in a plastic case that has sufficient free space inside for the necessary music box movement, resistor, and silicon rectifier diode.

The first step is to remove the round knurled time-setting knob from its shaft on the back of the clock. Grip the shaft with a
pair of pliers between the knob and the clock's back plate. Rotate the knob counterclockwise and it will come off the threaded shaft. Now remove the back plate. The interior of the clock is now exposed and ready to receive the music box components.

Wiring. It is easiest to wire the components before mounting them in the clock case. Following the schematic diagram and the photographs, connect and solder the components, keeping the leads just long enough to work comfortably. When connecting the silicon rectifier diode, observe the polarity shown in the schematic diagram. Connect one lead to a terminal of the clock's AC receptacle and the other to the upper fixed terminal of the resistor. Solder the red wire from the music box movement to the slider terminal of the resistor, and the white wire
to the remaining terminal of the $A C$ receptacle.

Mounting. Epoxy resin and hardener, available in 2 -tube sets in all hardware stores, is used to hold the musical movement and resistor in place inside the clock case. Looking at the back of the clock, place it on its left side on a flat surface. After mixing the resin and hardener, apply the epoxy to the bottom of the music box movement and set it on the left side of the clock case. Be careful not to let any epoxy touch the moving parts of the movement. Position the movement so it doesn't touch metallic parts of the clock. Also allow room for replacing the back plate. Allow the clock to rest on its side at least overnight, long enough for the epoxy to harden.

After the movement is secure, put the clock upright to glue the resistor in place. Glue the unconnected end of the resistor to the case of the clock. The position is not critical; it's important only that no other part of the clock's mechanism or wiring touch the resistor. Leave space for replacing the clock's back plate and, as before, allow time for the epoxy to harden before moving the clock.

Gears, Switches, and Trips. The clock mechanism includes an electric switch that is tripped at the time for which the alarm is set. This switch applies power to the AC receptacle on the front of the clock case. The diode rectifies the AC to DC for operating the motor of the music box movement. And the resistor limits the current through the motor which also controls its speed. The slider on the resistor provides the means for setting the current, or speed, limits. To find the best setting for the slider, move it to the unconnected side of the resistor. Now plug the clock into the house current and turn the clock's control knob to the On position.

The music box motor circuit connects across AC receptacle-music while your coffee percs.

Part location is determined by available space and your knack for mounting parts in tight corners. Be sure to check for shorts.

> PARTS LIST
> D1-Silicon rectifier diode, 200 PIV, 750 ma. (International Rectifier SD92 or equiv.)
> R1-2500-ohm, 25-watt resistor with slider S1-S.p.s.t. toggle switch (optional)
> 1-Music box movement (Order from Olson Electronics, 260 S. Forge St., Akron, Ohiol
> 1-Timer-alarm clock (Olson Electronics, Stock No. X-901)
> Misc: Wire, epoxy and hardener, solder, etc.
> Estimated cost: \$12.00
> Estimated construction time: 1 hour

Slowly move the slider toward the connected end of the resistor. Stop when the music box movement motor starts to operate. Turn the control knob off and on several times; if the movement doesn't start each time the knob is On, reset the slider a fraction of an inch closer to the connected terminal. Repeat the on-off sequence until you are satisfied that the movement starts reliably.

Set and Sleep. The clock's alarm setting is used in the conventional way. Usually an explanation of the clock controls is included with the timer movement. When the alarm is tripped, power is applied to the music box movement which continues to run until stopped by turning off the alarm clock's appliance circuit. If, after you leisurely awake to the music box, your morning becomes a hectic timed-to-the-last-minute affair, an extra switch can be added to the clock for further convenience. By placing a single-pole single-throw toggle switch in line with the music box movement, you can leave power on the AC front panel receptacle while turning off the music box. So, if your electric coffee pot is plugged in ready to "perc" at the crack of dawn, it will not be turned off when you turn off the music box alarm.

Master Electronics faster with RCA Home Training

NEW, EASY WAY TO BEGIA WITH "AUTOTEXT" PROGRAMMED INSTRUCTION HERE'S WHAT YOU GET!

4 fascinating
 THEORY LESSONS.

Here are all the basic principles of radio and electronics in easy-to-understand language, fully illustrated!

Exh coniains hamorois of coserbins, experimants and comtryction tech nigues to hols you marn easien
4. complete sERVICE PRACTICES.

Filled with practical, time-savirg, money-saving servicing tips to use throughout vour training!

PLUS ALL THIS AT NO EXTRA COST...

Begin your training the faster, easier way with new "Autotext" programmed instruction. You learn almost automati-cally-and go on to advanced training sooner than you ever thought possible! Practical work with the very first lesson. Liberal Tuition Plan. Pay only as you learn. No Iong term contracts to sign! No monthly installments required!

Complete selection of Home Training Courses to chnose from: TV Servicing - Color TV - Transistors - Commurications Electronics. FCC License Preparation - Mobile Communications - Automation Electronics - Digital Technicues - Nuclear Instrumentation - Automatic Controls - Industrial Applications - Drafting - Computer Programming.

CLASSROOM TRAINING ALSO AVAILABLE

RCA Institutes Resident School in New York City offers training that will prepare you to work in rewarding positions in fields such as automation, communications, television, computers, and other industrial and advanced electronic applications. You are eligible even if you haven't completed high school. Check Classroom training and information will be rushed to you.

Send postcard for free illusirafed book fodey! Specify home training or classroom fraining!

RCA INSTITUTES, INC., Dept. \&x-25
350 West 4th St., New York 14, N. Y.
the most thusted name IN ELECTRONICS

ELECTRO-VOICE KIT

TAKES 20 MINUTES

TO ASSEMBLE -

NEEDS NO TOOLS;

NO SOLDERING,

NO MESSY FINISHING

Finger indicates pre-cut tweeter opening in the front panel (above). The smaller of the two round cutouts is for the ducted-port tube. Typical of the wingnut-bolt assembly used by Electro-Voice, the bolt passes through the speaker mounting holes into a captive nut in the front panel as shown in the photo below.

EVEN if your hi-fi gear is in the save-abuck category, there's no reason why you can"t have a true-sounding, decent-looking speaker system sacrificing virtually nothing in performance when compared to larger, more expensive units.

The secret to low budget good looking sound is the Electro-Voice Coronet speaker kits. Hold on! Don't run away! Sure we know about those speaker kits where you get a few cans of paint which are supposed to give "the look of real hardwoods" (providing you're an expert finisher). And we know about those kits where you need a carpenter's shop for assembly. No, the E-V Coronets require no tools other than a pair of scissors, they can be assembled by a seven year old child and they are pre-finished. Yes, pre-finishedyou paint, brush and spray nothing. And wonder of wonders-no glue either.

The Coronet kits come with your choice

Four threaded rods (above) squeeze the top and bottom of the cabinet together against the sides. To prevent resonances at the joints, an adhesive gasket (below) is used to "insulate" the cabinet sections. The completed assembly will be as rigid as a glued-and-woodscrewed cabinet store-bought.

of one of four speakers. Regardless of the speaker choice a basic cabinet is used; a "bookshelf" type with an oiled walnut finish. Actually, a walnut veneer applied to a $3 / 4$ inch wood panel. The panels are tongue and grooved, precut to size with excellent accuracy; the finished product looks strictly pro. Unless you brag no one can tell it's a kit.

The cabinet assembles only with wingnutbolt combinations. Whether you're mounting a speaker or locking the cabinet together all you do is tighten a wingnut-no glue, no screwdriver, and no pliers.

To insure that the cabinet is resonance free at the joints an adhesive gasket-cut with scissors-is applied to all joints.

Photo Proof. The pictures tell the whole assembly story. If you think it looks easy you're right-it is. Total construction time is fifteen to twenty minutes. When you're
(Continued on page 134)

The sides are placed in position and then the bottom piece will be fitted on top. Nate use of heavy sound absorbing padding. Hanging wire pair connects speaker (and tweeter).

Four wingnuts on the bottom piece lock the cabinet together completing the "no-toolsneeded" assembly. The nuts fit in recessed cutouts so they cannot seratch your shelves.

To permit trouble-free expansion in the future, pictorial wiring diagrams and instructions for tweeter and tweeter contral connections are printed on cabinet's back.

NBC-TV.... AFRICAN SIMIE

TV lights the once darli condinent

T- African television viewers, NBC-TV means Nigerian Broadcasting Corporation, the first network in the newly emerged states of the continent. "First in Atrica" proclaims a sign on the 26 -story skyscraper in Ibadan, Nigeria's largest city, where the network's central offices are located. From these studios are televised a variety of shows daily to viewers within a radius of 90 miles, as far away as Lagos, Nigeria's capital and port city on the Gulf of Guinea. NBC also has a studio here, which means that most Nigerian TV fans have a view of all the important people and occurrences and entertainments in Nigeria's two leading cities. A studio at Enugu, to the east, completes the network. There are about 100,000 television sets in Nigerian homes, each costing an average $\$ 160.00$, though owners can purchase them with a down-payment of $\$ 60.00$.

Programming. Daily, five hours of programming are televised. Local producers are, of course, influenced by American and Eurofean show styles, but program content is equally determined by local tastes and other conditions, and also budgetary limit..tions. There is a demand for live television t.eatre, for example, but such plays are only rarely televised because an hour's time costs up to
$\$ 2,000$ and there are few professional actors available. Most TV performers are amateurs from community or university stages.

Mornings, there is a single program, mostly educational, which runs 90 minutes; the home screen doesn't resume until six p.m., when a newscast is televised. An amusing show, dealing with Nigerian daily life, follows. It is in the Yoruba language, the indigenous tongue of one of the largest (about $5,000,000$) ethnic groups in southern Nigeria. All other programming is in English, the official language. Always scheduled after this show is a film which will appeal to both adults and children-inevitably, an American "western." A star-studded feature movie follows, usually a Hollywood product. Afterwards, a locally produced "Women's Magazine" is televised, and the end of the viewing day comes at about nine p.m., when an international news film jetted in from London is shown.

Although the government partly owns the Nigerian Broadcasting Corporation, there are many commercials for products, and for the usual costly reasons. Local politicians haven't made much use of the medium in their c:mpaigns, however. All claim, privately, that they are dissatisfied with their image as projected by TV.

Program director signals cameraman during production of popular program "Aunt Ebun and Musa." He monitors position, angle, and sequencing of three cameras from screens on the console layout in front of him.

The 90 -minute morning program is mostly educational and cultural. Dances and games deriving from Nigerian folklore often appear.

The Broadcasting House al Lagos is one of the three radio-television studios in the country.

Educational TV. The network is making a significant contribution to the Nigerian people and to all of the new Africa, as well. In the works is a project to erect collective reception centers with very large television screens where as many as 200 people might view a program simultaneously. Such shows would be educational, now the most popular type televised. Ratings indicate a preference for documentaries on foreign countries, discussions in Yoruba on daily problems, and lectures which teach something-how to purify drinking water at home, for example.

Of significance to the rest of emerging

Segment of morning program for youngsters shows Julie Cocker and partner, who wears head of mammal well known to audience.

Africa is the fact that the network's entire staff-actors, directors, writers, technicians -learned their business in the local studios. As other stations open elsewhere in Africa, their staff's come first to Nigeria to learn television production. For it is indispensable to the success of television in the new Africa that all personnel be African, and at present NBC-TV is the only network on the continent with the facilities to support this optimistic point of view.

Lovely Julie Cocker is one of Nigeria's favorite TV personalities. Lagos is her home studio.

Electronics thaws out Jack Frost by keeping the heat in your car

Got the cold winter blues?- and especially when it comes to winter motoring? This clever electro-mechanical device will take some of the bite out of old man winter. One of winter's biggest bites occurs the first thing in the morning; you step out of a toasty warm house into a blustery gray winter morning and step into your car which feels even colder and proceed to crank it over. Several seconds later you thankfully uncross your fingers, listen to the cold, sputtering, wheezing engine, and settle down to waiting for it to warm up enough to drive. That's first on the agenda; you can't think of putting on the heater until you're several miles down the road.

How much nicer to find your car running and warm when you go out in the morning; and you can!-with this chauffeur-duplicating unit.

What Starts It? You can either instruct your "chauffeur" to start your car when the temperature drops below a certain mark, or you can have it started, say 10 or 15 minutes,
before you leave the house. Two "hearts" of the auto sentinel allow this selection. Cne is a 12 -hour timer and the other is a small temperature switch. The timer can be left at its zero position and the temperature swich will thermostatically start and stop the car to maintain engine temperature between 120 and 170 degrees. This arrangement is ideal for a "get away" car when your car has to roll at a moment's notice.

But the second option is ideally suited Eor most of us who have a fairly established routine. If you normally leave your home or work on a fairly routine basis, preset the timer for the span of hours until you'll be away less the warmup time you desire and you're all set. Leave the heater and defroster in the On position when you.leave the anto and you'll have a frost-free windshield to boot. At the predetermined time the timer interlocks close, initiating the engine start and run condition. As a safety measure, the temperature switch then takes over and tu:ns the engine off when it reaches the normal op-

Connections made to terminal boards TB1 and TB2 in chassis box from car's wiring.

TB1-1-From series connection of drive selector switch and engine temperature switch $\mathbf{S 2}$.
TB1-2-To low oil switch on engine block.
TB1-3-To voltage regulator armature terminal.
TB1-4-To series combination of drive selector safety switch 53 and engine (radiator) temperature switch 52 .

TB2-1-Hot line from auto battery.
TB2-2-Tap to ignition switch auto accessory circuit.
TB2-3-To parallel combination of starter solenoid and accelerator solenoid K6.
TB2-4-To hot side of ignition switch ignition circuit.

erating temperature. So if you oversleep or are otherwise delayed, the car does not run continuously but only maintains the engine about 120 degrees or more. The author's automobile, for example, will start and run four times an hour on a -10 degree day.

Safety Features. The circuit is designed to prevent a prolonged engine cranking condition if the engine will not start. The delay relays provide three separate starting attempts. Failure to start after the third attempt turns the unit off. No further action occurs until the sentinel is turned off and a two or three minute period is allowed for the timing delay relays to return to normal.

Low oil pressure protection is provided through the 1 and 3 interlocks of the generator relay, K4 (see schematic diagram). Once the engine is started, the generator relay is energized from the output of the generator armature. This relay, K4, has a triple purpose in that upon energization it immediately disconnects the starter circuit through the 8 to 5 interlocks; it atso interrupts the timing

The five relays along with terminal boards TB1 and TB2 are mounted on a $33 / 8^{\prime \prime} \times 77 / 8^{\prime \prime}$ scrap aluminum. Follow parts arrangement to avoid trouble.

Wire up unit before installing relay subassembly inside of chassis box. Complete assembly of unit-be sure all parts are securely mounted to take the road and motor vibrations.

AUTO SENTINEL PARTS LIST

F1- $1 / 8$-ampere fuse and holder (Allied Radio 528230 and 418720 , respectively.)
11-Indicator lamp and assembly (Allied Radio 7E513 and 7E781, respectively.)
K1, K2-S.p.s.t., normally closed delay relays, 30 and 120 seconds, respectively, (Amperite 6 C 301 and 6 Cl 20 T or equiv.)
K3, K4, K5-Switching relays, 6 -volt DC coil (Potter and Brumfield Type GPD or equiv.)
K6-intermittent-duty solenoid, 6-volt, 2-ohm $1 / \mathbf{"}^{\prime \prime}$ to $/ \mathbf{y}^{\prime \prime}$ stroke, 39-ounce lift (sufficient for most cars), (Guardian Electric Mfg. Co. No. 11 or equiv.)
R1, R2-22-ohm, 2-watt fixed resistors
S1-S.p.s.t. toggle switch
S2-Temperature switch with mylar sleeve "Fascostat". Order directly from: Fasco in-
dustries, Inc., Agusta at North Union, Rochester, N. Y., 14602
S3-Mechanically actuated, snap-action, S.p.s.t. switch (Operating force and pre-travel defermined by the make of cutomobile. J
TB1, TB2-4-prong terminal strips
1 -Aluminum chassis, $8^{\prime \prime} \times 6^{\prime \prime} \times 31 / 2^{\prime \prime}$ (Bud 3009 a or equiv.)
1-12-hour fimer with normal closed contacts that open when time is set $(M$. H. Rhodes type 90,015-accept no substitutes.)
Misc.-Scrap aluminum, cotter pins, epoxy cement, No. 12 and 20 wire, 9-pim tube sockets (2), nuts, bolts, solder, etc.

Estimated cost: $\$ 30.00$
Estimated construction and installation time: 12 hours
cycle of the ignition timing relay, K3. through the 1 and 4 interlocks. The 1 to 3 interlocks continue to provide heater current to the $120-\mathrm{sec}$. delay relay, K2, until the low oil pressure light goes out.

A drive selector safety switch, S3, is located at any convenient position on the lower portion of the steering column. It should be connected so the switch will be held closed electrically with the drive selector in Neutral or Park only. This switch has a two-fold purpose: primarily, it won't allow the engine to be started while the auto is in gear, and secondly, it will automatically stop the engine without the ignition key.

Contruction And Wiring. The unit is contained in an $8^{\prime \prime} \times 6^{\prime \prime} \times 31 / 2^{\prime \prime}$ aluminum cabinet. As shown in the photographs. the timer, fuse holder, indicator light, and power switch are mounted on the front panel. The remaining five relays are mounted in a row on a $33 / 8^{\prime \prime} \mathrm{x}$ $77 / 8^{\prime \prime}$ scrap piece of aluminum that forms a chassis base when mounted in the cabinet an inch above the bottom. The arrangement of the relays and the terminal strips provides the optimum wiring arrangement. The leads from the ignition and starter relays to the four prongs of terminal board TB2 are all No. 12 wire (shown heavy on the schematic diagram). The remaining wiring is No. 20. The starter relay interlocks of starter relay, K 5 , are wired in parallel to handle currents up to 20 amperes. The accelerator solenoid, K6, is connected in parallel with the starter solenoid to trip the automatic choke and pick up the fast idle cam on the carburetor.

Installation. In addition to the ground lead from the sentinel chassis to your auto's ground, there are eight leads that must be connected from terminal strips TB1 and TB2 to various points in the automobile. Most are direct electrical connections, to your low oil switch, for example, and will vary according to the year and make of your car. Two connections bear mentioning: 1. Accelerator Solenoid. The mounting and linkages can be made from scrap aluminum and will have to be engineered for your particular automobile. The author's installation in an Oldsmobile is shown in the photograph. Care should be exercised to provide ample clearance between the linkage of the accelerator solenoid, K6, and the accelerator linkage so normal acceleration and deceleration is not impaired. The leads to the solenoid should then be snaked to avoid entanglement with mechanical linkages.
2. Engine temperature switch, S2, should

The accelerator solenoid, K6, takes a bit of doing to mount correctly. In no way should it interfere with your car's accelerator linkage.
be mounted on top of the radiator header. The switch is electrically hot and must be enclosed in its mylar sleeve after the two leads are soldered to its terminals. To secure the switch to the header, place a generous amount of epoxy type cement on the radiator and place the switch into it. Do not move the assembly until the epoxy has set up. A warm engine, incidentally, will usually speed up the epoxy curing time.

The sentinel itself can be located anywhere in the auto that you find convenient. Remember, if your car is running in a garage, take precaution to ensure adequate ventilation. If you Florida and other sub-tropical readers feel slighted at all this concern to increase the comfort of those who must endure the great northern winters, don't be. What about your summers? Are they uncomfortable enough that you've got an air conditioner in your car? Then set the auto sentinel to cool it!

Admittedly, this project should not be attempted by the novice experimenter who has never "fooled" with his car's wiring. Before going ahead with this project, obtain a service manual for your automobile from the manufacturer. They can be had for about five dollars, but price will vary from dealer to dealer. Study the electrical circuit until you fully understand it. You may find that there are changes and adaptations you wish to make which are beyond the scope of this article. One important fact to remember, the Auto Sentinel is not a substitute for a recommended service station maintenance program such as tune up, winterizing, new points and spark plugs. If your car is a hot performer in the late fall, then the auto sentinel will keep it hot when ol' man Winter blows.

PEP UP THOSE DYING DRY CELLS

Inexpensive battery charger keeps

children's toys and flashlights in fully-charged dry cells

What do you do when a dry cell grows weak? If you toss it into the trash can, you stand to lose about $\$ 3.00$ every time. Why? Dry cells can be recharged to give up to 15 new lives, and at $20 \hat{\text { p }}$ per life you stand to lose a lot. The "Plug'n Charge" home battery charger sells for $\$ 5.95$ and it can recharge D, C, and AA dry cells as well as the popular 9 -volt batteries found in transistor radio. It doesn't matter whether they are carbon-zinc, alkaline, nickel-cadmium or mercury varieties, the charger's half-wave rectifier circuit pumps 32 ma . of pulsating current through the cells. A handy chart on the bottom of the unit tells you how long to charge each type. Powered from the AC line, the charger has a power interlock making it safe for the fumble-hasty housewife. To order or obtain information, write to Dynamic Instrument Corp., E. Bethpage Rd., Plainview, N. Y.

Top photo shows charger ready to charge D and C dry cells once lid has been closed. Below, 9 -voli battery is about to be charged.

Simple enough to build yourself, the circuit requires a power diode rated at 100 ma . at 200 PIV or better. A 10 -watt tungsten lamp serves as the current-regulating ballast tube.

The Helicopter

 that Flies on Radio Waves

 that Flies on Radio Waves}

It took 65 years to make a Science Fiction dream come true

In 1899, Nikola Tesla constructed a $200-$ foot Tesla coil rated at 300 kilowatts and 150 kilocycles. Tesla hoped to set up stand-ing-waves of electrical energy around the whole surface of the earth, so that receiving antennas set at optimum points could tap this power when needed. Tesla's plan failed, but 65 years later Raytheon's Super Power Laboratory employing all the modern resources of radar and solid state electronics demonstrated that radio waves could fly a small model helicopter. The demonstration consisted of generating 400 watts of RF power at 2450 mc ., focusing this power into a narrow microwave beam. The helicopter's antenna received the power, and rectified the microwave energy into 102 watts of DC power driving the 'copters electric motor. Although this was a modest demonstration, Raytheon successfully demonstrated microwaves someday would be used for power transfer purposes.
-J. Sienkiewicz

Raytheon engineers (above) ready specially constructed helicopter for its 50-foot flight. Wire grille antenna contains thousands of tiny glass-bead diodes that rectify the RF signal as it is received. Since the copter was unmanned, wire tethers limited flight to a true vertical only. Focusing antenna (right) is of the parabolic type designed to beam microwaves straight up to "copter.

How to make better tape recordings...

BUILD a $\square\urcorner]$ meter

By Herbert Friedman

Professional recording engineers tell us . . . You've got to use a volume level indicator to get best results from a tape recorder." Why? Because the signal-to-noise ratio and distortion are determined by the recorded sound level. Actually, the record and playback amplifiers are virtually distortion free; whatever distortion exists is primarily determined by the recorded level on the tape.
"But of course," you say, "all recorders have some kind of level indicators, so what's the big deal?" The answer is that word indicator; exactly what does your recorder's indicator indicate?

Up until recent years most moderate priced tape recorders and some expensive ones used "eye tubes" or flashing neon lamps to indicate the maximum recording level. When the recorder's input signal is sufficient to drive the tape just to the overload peint the eye tubes close and the neons flash. But if the signal is just short of maximum the eye doesn't close and the neon doesn't flash-so what's on the tape? ls the signal near the rptimum level or is it down in the noise level? And if the eye tubes do close and the neon does flash is the sound level at maximum or has maximum been exceeded-you don't really know. All these peak indicators tell you is that at some point the recorded signal has been at or near maximum.

Perhaps you'll get a picture of the need
for a good recording level indicator by examining the effect of recorded level on tape playback.

Tape and Distortion. Tape recorder specifications are referenced to a specific distortion level. Since the electronic circuits are usually distortion free the total harmonic distortion (THD) on playback is considered the tape distortion. The usual practice is to establish the maximum recording level at the point which produces 2% THD on playback. (Some recorders use 3% THD as the reference level.) The noise figure is then referenced to the recorder input level which produces 2% THD. For example, record and playback controls are set "wide open" and the input signal (sign wave) is adjusted to produce 2% THD on playback. The generator is then disconnected from the recorder, the input is terminated with a resistor equal to the signal generator's output impedance, and the noise level is measured. If the noise level is, say, -50 db , it is the optimum figure; in actual use the noise figure is less.

Since the input level which produces 2% THD is virtually tape saturation, increasing the input signal level only causes the distortion to rise sharply, without a corresponding increase in output level (amplitude distortion).

Fig. 1 illustrates the distortion and noise effects at tape saturation ($2 \% \mathrm{THD}$). If the signal level is increased above saturation the distortion rises sharply. When the input signal is reduced below saturation the noise level is increased.

How does this all affect you? Let's take a typical case, a recorder equipped with a neon

```
        PARTS LIST
Jl—Phono jack
M1_-VU meter (Lafayette 99G5043 or equiv.)
R1-See text
R2-100,000-ohm potentiometer, linear taper
R3--See text
SI-S.p.d.t. toggle switch
1 -Aluminum cabinet, style and size optional
    —author used \(3^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime}\) box
Misc.-Potentiometer mounting bracket, wire,
    solder, hardware, etc.
Estimated cost: \$10.00
Estimated construction time: \(11 / 2\) hours
```

recording indicator lamp. To insure minimum distortion the recorder input is kept below the level which flashes the indicatorit lights only on occasional signal peaks. Well what exactly is the recorder input level -the lamp isn't telling you, it only says the level is below tape saturation. But how low, perhaps the level is 10 db below optimum, so the effective noise level appears to go up 10 db . If the optimum noise level is -50 db it is now -40 db , and -40 db is easily heard.

Then again, suppose you find the tape noise (hiss) extremely annoying and you try to overcome it by recording as close as possible to the saturation level. The flashing lamp doesn't get any brighter when maximum level is exceeded. (True, an eye tube will overlap slightly but there is a limit to overlap.) How do you know when saturation has been exceeded-you don't know until you play the tape back and hear the distortion.

So you see, lamps and cye tubes aren't the hest means of indicating recording level.

Note the meter has two sets of terminals. Extra set is the power connections for the panel lamps. If the meter is inoperative, connection has probably been made to the lamp terminals. Special bracket holding potentiometer R2 is standard stock; it can be made from aluminum scrap.

Fig. 3. Typical recorder oufput circuit. Note terminating resisitor is lifted when the speaker output jack is used. On some models the botfom of the resistor is connected to the top terminal of the jack and is never disconnected.

Fig. 4. This simple circuit allows the VU meter to be calibrated for any recorder. R2 calibrates meter for sine-wave tone. S1-R1 corrects reading 10 db to allow for "loss" when meter indicates voice/music program level.
damping difference is of no concern during recording it must be taken into account when using tone to check the recorder.)

Where to tie In. Connecting a VU meter to the average budget recorder is a relatively easy job, certainly within the capabilities of all readers-you just connect it to the recorder's speaker output jack.

A common recorder circuit is shown in Fig. 3-the AF power output tube is also the recording head driver. During playback the speaker is connected to the output transformer. During recording the speaker is disconnected and a resistor load is substituted for the speaker. (On some recorders there is a permanent resistor connected to the output transformer-even when the speaker is connected.) Since the output transformer connections are brought to the "speaker jack" a VU meter is easily connected; just plug into the speaker jack.

Of course, some means must be provided for calibrating the VU meter and terminating the output transformer, and Fig. 4 and the photos show the circuit that does the job.

Construction. The VU meter assembly is mounted in a $3 \times 4 \times 5$ inch aluminum cabinet. To avoid upsetting the calibration, calibration control R2 is mounted inside the cabinet on a special "control bracket" which is available from most electronic parts distributors.

Resistor R3 is used only if your recorder uses a terminating resistor which is disconnected when the speaker jack is used: and R3 is exactly the value of the resistor in the recorder. For example, if the recorder uses a 4 -ohm, $1 / 2$ watt terminating resistor R 3 is 4-ohms, $1 / 2$ watt. If the recorder's terminating resistor is not disconnected when the speaker jack is used eliminate $R 3$.

Resistor R1 is specified in the instruction manual supplied with the VU meter as 18,000 ohms; ignore it. Sometimes it is 18 K and sometimes it isn't; the value must be determined for your particular recorder.

Calibrating the Meter. Set S 1 to the calibrate and VU position (closed) and connect Jl to the recorder's speaker outputa standard audio patch cord can be used. Temporarily connect a 25,000 -ohm potentiometer in place of R1 and connect a signal generator to the recorder input. Adjust the signal generator and the recorder gain controls so the neon lamp just lights or the eye tube just closes (with the tape running through the heads). Then adjust R2 so the meter indicates " Q " $V U$ (or 100%). Leave all level controls alone for the next step. Open Sl (the "peak" position) and adjust the R1 potentiometer until the meter indicates -10 VU . Since R1 and R2 interact to some degree, perform the two adjustments several times until the opening and closing of Sl always results in a 10 db difference with the reference at " O " $V U$. There will be several settings of R1 and R2 which will result in a 10 db difference but the reference won"t be "O" VU. Don't be in a hurry-the meter must indicate "O" with S1 closed.

Carefully, without disturbing R1's adjustment, remove RI from the circuit, measure its value with an ohmmeter, and connect a fixed resistor of the closest value across S 1 .

Using the VU Meter. For program material Sl is kept closed. Optimum recording level will occur when the average program peak causes the meter pointer to rise to "O". It is perfectly satisfactory for an occasional loud peak to rise the pointer into the "red region" (above "O"). Just make certain the level isn't so high the pointer continually slams into the right hand "pin". The meter's
calibration provides a 10 db "buffer" below maximum recording level and an occasional rise into the "red region" will not cause tape overload distortion.

Remember that the meter is calibrated to provide optimum recording level. Adjusting the recorder's gain control so the meter never reaches " O " is only sacrificing signal-to-noise ratio-it won't improve sound quality.

When using tone for recorder tests the meter is calibrated for "peak reading" by opening S 1 -"O" VU indicating maximum recording level. However, keep in mind that you cannot run frequency curves at maximum level. The built-in recording equalization requires that frequency curves be run 12 to 16 db below naximum.

First, set Sl open. Then, feed in a 400 cps signal to the recorder and adjust the signal level for a -12 db reading. Holding the input signal steady, sweep the band within your recorder's frequency range, say

The completed unit gives a professional look to your recording setup. Keep an eye on the meter's pointer when manipulating the tape recorder's volume controls to different levels.

50 to 12000 cps . The meter reading will increase as the frequency is raised. At no time should the meter reading exceed " O ". If any frequency causes the pointer to rise above " O " reduce the input level accordingly. Once you have established the correct cps, close Sl, and note the meter readingthis is the input reference level for the recorder. Anytime you want to check the recorder just feed in a 400 cps signal and adjust the generator (or recorder gain control) for the reference meter reading - then sweep all frequencies. The recorder's playback output will then be an accurate reflection of the overall frequency response.

HEATH-KIT AR-13A

 All-Transistor Stereo Receiver

What are the features you'd be likely to find in a deluxe stereo receiver? All solid state, perhaps, to keep down heat dissipation? A positive stereo indicator which indicates stereo broadcasts even when the FM is set to mono? Or how about a rock-steady AFC that keeps the stations tuned in on-thebutton even from a cold start? You could certainly work up a long list of desired features, but would you be able to find them in a moderately priced receiver? If you're thinking about the Heathkit AR-13A AMFM Stereo Transistor Receiver the answer is yes; for packed into a single chassis is just about every convenience you can think of.

Designed-In Features. It would take too much space to list all the features-you can look them up in Heath's ads anyway-but a few of the major features are: Adjustable phasing of the 19 kc pilot signal (can compensate for component aging); MPX balance in addition to standard amplifier balance; FM squelch to keep the receiver quiet between stations; exceptionally good AFC: selectable SCA and stereo noise filters; and fused outputs to protect the transistors from destruction should the speaker leads be shorted.

And just a few examples of minor features
which though not earth shaking are a decided convenience: Dual tandem tone and volume controls; individual pre-setting level con:rols on the magnetic and auxiliary inputs so you aren ${ }^{\circ}$ jarred out of your seat when switching progrann sources of different levels; and a 4 ohm speaker output in addition to 8 and 16 ohms.

It takes 46 transistors and 17 diodes to get all these features into one package. Actually, the receiver is a combination-with a common power supply-of Heath's AM-FM Stereo tuner and 40 watt amplifier also ofered as individual units. While there are a formidable number of components the potential builder should fear not; the circuits are broken down into four major printed circuits: the AM-FM IF strip, the MPX adapter and the two preamps. Each ctilize their own PC board so the constructor handles small units. But as you might expect. it takes 16 hours to build the kit.

The really critical circuits-the FM tuner and IF and MPX coils-are supplied prealigned; the FM tuner is also prewired.

Though many controls are used Heath has avoided the "engineer's panel" appearance which is often confusing even to the most

The power bandwidth curve for Heath-kit AR-13A shows less than 1% variation in the listening spectrum with each channel driven simultaneously at full 20 -watts by sinusoidal input.

Over half of the wiring is on five printed circuit boards and Heath wires one of them for you. The $M X$ board (left), input circuit (bottom right), and two audio preamplifiers (middle right) can be wired in under ten hours. If amplifier is pre-wired.

experienced of audiophiles. The controls and switches which are only occasionally usedor set just once-are hidden behind a decorcover door running the full length of the front panel along the bottom. The only exposed front panel controls are the usual tuning, volume, tone, input and mode.

Alignment. Since the AM tuner, IF amplifiers and MPX are user wired one might expect a difficult alignment procedure. In fact, one might expect that a beginner might not be able to obtain optimum alignment. Such is not the case. Two alignment procedures are provided: instrument and noninstrument. The instrument alignment requires only quality service grade equipment and can be done-or should only be doneby someone experienced in instrument alignment of FM receivers. Actually, the instrument alignment offers very little over the noninstrument procedure. Most of the coils are pre-aligned and Heath supplies a notably easy procedure for the few user adjusted coils. The only requirement is that the user read carefully so as not to confuse a clockwise adjustment with a counterclockwise adjustment.

How It Checks Out. Of course, the final performance determines whether any equip-ment-kit or otherwise-is worth the money and time expended. So let's run down the audio section first.

This editor first heard the amplifier section when it was first offered as a separate unit, and thought at the time that a new high in sound quality had been obtained. It had a "certain something", which became known as "transistor sound." I have no reason to change that opinion now. The amplifier delivers a shimmering sound quality which is immediately apparent. The bass has a solid thud and the highs are delivered without stridency. The measured frequency response has no relationship to the actual sound because any modern amplifier shows good
curves. The difference is in what the ear hears, and it hears some good sound from the AR-13A.

In addition to the built-in AM-FM a magnetic input with 6 mv . sensitivity for 20 watts output is provided plus two auxiliary inputs with a .25 volt sensitivity. Tape recorder jacks for each channel are connected before the tone and volume controls so that no changes to the amplifier control setting affect the recording.

Typical of transistor amplifiers the speaker impedance determines the power output; for example, at 1 kc ., an 8 ohm speaker will pull 20 watts (sine wave) at $.3 \%$ total harmonic distortion (THD) while a 16 ohm speaker pulls 13.5 watts at .390 THD PER CHANNEL. A four ohm speaker will pull 9 watts. While 4 ohm connections are not common to transistor amplifiers, Heath obtains this output impedance through an internal 4 ohm resistor which is automatically connected in series with a 4 ohm speaker-the amplifier "sees" 8 ohms.

Power Output/Channel (Watts) at $.3 \%$ THD at 1 kc		
4 ohms	8 ohms	16 ohms
9	22	14

The overall performance was so close to Heath's specs that it's not worth taking up space. Whether the delivered performance was slightly more or less than claimed was insignificant and couldn't be heard.

The Tuner Section. The AM tuner is notably good for AM tuners with low noise even in the presence of large fluorescents.

The FM reception is excellent. The AFC is very hard and will grab a station even if the tuning is set to the very fringe of a signal's
(Continued on page 132)

ACOUSTIC RESEARCH XA Two-Speed/Manual Stereo Turntable

Take a few minutes and add up the cost of your amplifier. speakers and record collection. Even if you've only got a hundred or so records the investment is somewhere between $\$ 500$ and $\$ 1000$. So what's it worth to you to hear the music exactly as it was recorded? How much is a turntable worth which adds no coloration of its own -no wow, no rumble, no hum, no pitch changes. Better yet, what's it worth for a turntable which exceeds the stability of the best broadcast turntables; one that will keep the needle in the groove even when a bunch of teenagers use the music room for a dance hall. Is it worth $\$ 200$ or $\$ 300$? Maybe it is, but all it will cost you is $\$ 78$, the price of AR's Model XA turntable.

The XA turntable is actually a "player", equipped with a 2 speed motor (45$33^{1 / 3}$), pre-mounted arm and oiled walnut base.

Two Motors. An unusual feature of this turntable is the motor, actually two motors.

A simple but extremely accurate stylus pres sure is standard equipment with each kit.

Think, what is virtually the most constant speed motor available at a reasonable price? That's right, clock motors; and the XA uses two clock motors which deliver a phenominal speed regulation. A strobe disc stands rock-still on the XA-no drift, no warble or shift: even when it is tested with a deliberately warped record which causes the needle to "dig in" on the "hills." And speaking on warped records, the arm pivot pont is just about equal to the height of the rezord: this is the optimum point required for proper tracking of warped records. There is none of the familiar tone slide commonly caused by excess record warp, the AR plays "dean" even when the warp is iust short of hanging the arm on the heel of the cartridge.

Wow and flutter is at rock bottom, it cannot be heard and it can't be measured because it falls into the residual reading on our wow and flutter meter. Pitch change, caused
(Continued on page 131)

Exact location for optimum stylus tracking is possible with AR's stylus overhang gauge.

PROPAGATION FORECAST

for February-March, 1965

By C. M. Stanbury II

Conditions for the next couple months will be approximately the same as they have been throughout this winter. The upper bands, especially 19 meters, will be somewhat more erratic due to a further deterioration in the F2 layer (for some mysterious reason this layer is at its reflecting best on the longest day of the year) and to emphasize this hazard, we have added that term erratic at appropriate points in the chart.

The lower bands, particularly 90 and 60 meters, will continue to be excellent for DX'ers. Although SWBC targets are fewer, 75 meters will also he good when U. S. \& Canadian ham QRM falls off due to skipping. On the other hand, 49 meters could be good but won't be because of tremendous overcrowding. This condition will ease up after

Midnight and SWL's should also keep an ear open for late morning opening to Latin America. On this same 49 meter band at midday (or a little earlier), watch for low powered Canadian stations like CKFX at Vancouver, B. C., on 6080 kc with a mere 10 watts. It's going to be that kind of a year -so get your gear in tip-top shape.

This will be a rough season for daytime and/or don't-work-too-hard type listeners, but not for the real DXer. The latter is in a position to log things which will be almost impossible in years to come. Same applies to the medium-wave broadcast band and to Utility DX'ing between 1605 and 3000 kc . For more on utility listening, read Marine Broadcast DX (page 95, December/January, 1964 issue).

To use the table, put your finger on the region you want to hear and log, move your finger to the right until it is under the local standard time you will be listening and lift your finger. Underneath your pointing digit will be the short-wave band or bands that will give the best DX results. The time in the above propagation prediction table is given in standard time at the listener's location which effectively compensates for differences in propagation characteristics between the east and west coasts of North America. However, Asia and the South Pacific stations will generally be received stronger in the West while Europe and Africa will be easy to tune on the east coast. The short-wave bands in brackets are given as poor second choices. Refer to White's Radio Log for World-Wide Short-Wave Stations listing.

Operation QRM

By C. M. Stanbury //

Radio Porlamar was one of those long shots DXers dream about. You get one crack at it, if you blow your chance, go chase the BBC. Porlamar is the capitol of Isla Margarita. On March 1 the island not only declared its independence from Venezuela but a new social system too-matriarchy. Then before you could catch your breath, some publicity minded rebel official, a ham, scheduled this DX program for the 15th. They picked 1575 kc which after 1:00 AM is a clear channel, usually. The program started then and ran until 3:00.

This frequency in the evening is a real mess here in North America. 「've never heard either the Costa Rican or Dominican which normally hold it down because of my neighbor's antique TV set whose sync circuit puts an S/9 plus signal on 1575. But their evil eye (in the flat across the hall) is always turned off sharp at $1: 00$ (after the late show). I counted on this. kept my fingers crossed, wore a rabbit's foot, the whole bit, because tomorrow Venezuela held elections and who ever won would re-occupy Isla Margarita, immediately.

At 12:50 I tuned in 1575, right on the
nose with that TVI to guide me in. Then I put my Q multiplier (a QX535) irto the circuit. . . .

And waited.
Nothing happened. At 1:05 that mighty buzz across the hall was still going strong. At $1: 10$ the suspense became unbearable and by 1:20 I knew I was going to have to do something. But how the devil do you talk someone into turning off thei: Television. It's like your stomping on the household deity.

Even by 1:30 I didn't really have a plan, just a theory-"The whole truth and nothing but the truth." It sounded good, anyway. I took a long deep breath, left my own 'cave," crossed the hall and knocked.
"Yes?" Soft feminine voice.
"Mrs. Taylor'?" Probably thought I was a masher or something.

She opened her door a crack but left the chain on. "Do I look like Mrs. Taylor?"

She certainly didn't. Shook my head.
"What do you want? I'm the baby sitter." The lousy 40 watt bulb in the hall cidn't do anything for her confidence.

Pointed to myself. "Halder Scott, Hal

Scott from across the hall."
"And what do you want?" I still looked like a masher.

Hesitated. "Do you supose you could turn your TV set off for about ten minutes?"

Rested one hand on the hip and gave me a look.
"You see, I'm a DXer. That's someone who tunes for. . . ."
"Yes, I know what DX is."
Figured I had it made. "Well, I'm trying for a very special program on 1575 ."

Nodded, slight smile. "And my set is blocking the frequency."
"Yes." Could almost see that QSL from Radio Porlamar. "So will you turn it off?"

She unhooked the chain. "Come in here and look at my set." A command as she swung the door open wide.

I tried to catch the angle--like the on/ off knob was missing and she couldn't find

the wall plug? Got inside, she closed the door behind us, I took one look at the picture and flipped. Perfect ID panel from HIT-TV in Santo Domingo.
"Most beautiful F skip you ever saw." She cut the brightness back a little. "It's been like this all evening on channel 2. ."

HIT began to fade and just like that Circuito CMQ from somewhere in Cuba took its place.
"A TV DXer's dream." Made sure her contrast was on full. "And until it quits, this set stays on." Patted her monster lovingly.

A BCB man's nightmare. I began to sag back into an easy chair, think up some new strategy.
"Hold it." She retrieved her camera from the seat behind me, snapped a picture of CMQ's ID panel.

Sat down. "Couldn't you even turn it off for 5 minutes?"
"Uh uh." Took another picture just to be sure. "But I will make you a cup of coffee while we watch the DX roll in." Saucy smile.
Sighed. "Might as well."
She moved into the kitchen. "Hope instant's okay?"
"Yes." Gave her set a dirty look, tempted to cut the cord and run.
"What's CMQ doing?"
"Starting to fade." Maybe the opening would fold.

She hurried back with our coffee, just as YSY in El Salvador appeared. Handed me my cup. "I'll get the cream and sugar in just a second." Rolled her film to the next picture.
"I take it black . . . what is your name anyway?"
"Opal." Another station came in with YSY and neither were visible for a few minutes, just those black and white bars produced by a 20 kc offset. "If I were home, could separate them with my beam and rotor."
"Why don't you go, I'll take over for you."

Laughed. "Never quit trying, do you?" YSY took command again, just as it identified. Opal aimed her camera and pulled the trigger, she worked like a pro, better.

Glanced at my watch-2:00. I kept the thing right on the nose, which left me an hour to go. Could still make it.

YSY signed off.
A final glimmer of hope. "Wouldn't they all be off by now?"
"No. CMQ and HIT are gone but a couple others should still be around." Television Central in Panama made it through.
"How many shots you got left on that film?"
"Five." She captured the Panamanian. "Enough." A second shot. Opal never passed up that safety factor.

Sipped my coffee until 2:30 when YVKS in Caracas, Venezuela showed. Opal bagged it. held up one finger.

Didn't get a chance to answer. With fantastic signal, a hand made 1D panel skipped in. "Television Porlamar, la Voz del Matriarcado. Viva la Femenino."

Right then I swore off DX for at least the next 24 hours.

Opal moved in for the kill. "At the last minute they decided to try TV too." Used her camera. Again.

But what else could I expect from a Matriarchy?

=
 Inductance Bridge

3 simple circuits working together let you measure inductence

You can find the value of those unmarked surplus and commercial type inductances with this handy transistorized inductance bridge. This simplified, easy to build unit uses three inexpensive transistors in a battery powered circuit that will adequately determine inductance values of RF. audio and filter chokes from I millihenry to 100 henries.

The bridge is housed in a compact $4^{\prime \prime} \times 5^{\prime \prime} \times$
$6^{\prime \prime}$ aluminum utility box. with all components self-contained. A built-in meter and direct reading dials. indicate the inductance values.

How It Works. Approximately 1 kc is generated by the R-C phase shilt oscillator circuit of $Q 3$ and is connected via the $Q 2$ emitter-follower circuit to the basic irductance bridge circuit.

The unknown inductance is conrected across JI. Then the inductance control R2,

By Charles Green, W3IKH

and balance control R7 are adjusted to balance the bridge circuit for a minimum indication on meter M1. The inductance control, R2, is calibrated to read the inductance value, multiplied by range switch S1 setting.

The range resistors R3, R4, R5, and R6 are connected into the basic bridge circuit by range switch S 1 A , with the reference capacitors, $\mathrm{C} 1-\mathrm{C} 2$, switched by S1B for the ranges of 1 millihenry to 100 henries.

The 1 kc output of the bridge circuit is coupled via the Sensitivity control, R8, to Q1. This amplifier signal is then rectified by the detector circuit of D1, D2, D3, and D4. The de output actuates M1, which indicates the balancing of the bridge circuit by a minimum reading (null).

S2 controls the battery power to the unit. Two 9 volt batteries are used to provide isolation between the oscillator and detector.

Construction. The wiring and layout are not critical, any parts placement and box size can be used. The author utilized a $4^{\prime \prime} \times 5^{\prime \prime} \times 6^{\prime \prime}$ aluminum chassis box with component layout as shown in the photos.

Meter M1 can be any type from 50 ua to 1 ma., the greater the sensitivity of the meter, the more accurate the adjustment of the Inductance control, R2, will be for balancing the bridge circuit. As the meter does not have to be calibrated, any type of meter scale can be used, such as the surplus one shown in the photo.

The scale for the Inductance control, R2, was made by painting an aluminum disc with black enamel and scratching the calibration markings. But a paper scale with ink notations can also be used.

The basic bridge components are mounted on the front panel of the box, using shake-

An inductance bridge circuit, 1 kc . oscillator and null detector comprise the test unit.

The author's phenolic board assemblies are shown for layout reference. Amplifier-null detector board is at top and 1 kc . oscillator board is shewn below. It is suggested that novices follow the author's original layout very carefully.

PARTS LIST

B1, B2-9 volt battery (Burgess 2U6 or equiv.)
C1-. 01 mf ., 100 -volt paper capacitor
C2-. 1 mf ., 100 -volt paper capacitor
C3-. 1 mf ., 100 -volt paper capacitor
C4, C5— 5 mf ., $\mathbf{2 5 - v o l t}$ miniature electrolytic capacitor
C6-. 05 mf ., 100 -valt paper capacitor
C7, C8, C9, C10-. 05 mf ., 100 -volt paper capacifor
D1, D2, D3, D4-1N198 diode (1N34A or 1 N60 can be used)
Jl-Dual binding post assembly (H. H. Smith Pype 2091
M1-1-ma. DC meter (Emico RF-2C, Shurite 8300 Z , or equiv.)
Q1, Q2, O3-2N107 transisfor
R1-470-ohm, $1 / 2$-watt resistor
R2-10,000-ohm, 5-watt, wire-wound potentiomefer, linear toper
R3-100,000-ohm, $1 / 2$-watt resistor
R4-10,000-ohm, $1 / 2$-watt resistor

R5-1,000-ohm, $1 / 2$-watt resistor
R6-100-ohm, $1 / 2$-watt resistor
RT-25,000-ohm carbon potentiometer, linear faper
48-250,000-ohm carbon potentiometer
F9-330,000-ohm, $1 / 2$-watt resistor
R10, R11, R13-2,200-ohm, $1 / 2$-watt resistor
F12-150,000-ohm, $1 / 2$-watt resistor
F 14-220,000-ohm, $1 / 2$-watt resistor
F15, R16, R17-1.8K, $1 / 2$-Watt, 10% carbon resistor
S1-2-pole, 5-position rotary switch, nonshorting
\$2-2-pole, 2-position rotary switch, nonshorting
$1-4^{\prime \prime} \times 5^{\prime \prime} \times 6^{\prime \prime}$ aluminum box (LMB 142 or equiv.)
Misc,—perforated boards, wire, hardware, efr.
Estimated cost: \$25.00
Estimated construction time: 8 hours

Inside view of the completed inductance bridge showing location of board assemblies and internal part locations. Note absence of rat's nest wiring.
proof washers to prevent movement. The amplifier-detector and the oscillator-emitter follower circuits are installed on two perforated boards. The wiring of the perforated boards can be made using "flea clips" or feeding the leads through the holes, bending the ends, and soldering. All of the wiring should be made on the side of the boards that the components are mounted on. This will simplify any possible troubleshooting after the boards are mounted in the box. Mount the perforated boards with a spacing nut on their mounting screws to make sure that the flea clips or soldered wiring does not short to the box side. Note: do not connect the wires to the arm of the Inductance control, R2, until after calibration.

Make battery mounting brackets out of sheet aluminum strips and cover them with a plastic tape, wrapping to insulate the batteries from the case.

The metal box is not electrically connected to the circuits. The author did not notice any hand capacity effects while operating the unit, but an external ground to the case can be used if required. The battery connectors can be fabricated by disassembling old batteries and using their terminal strips.

Calibration and Operation. Calibrate the inductance dial by hooking up an ohmmeter between the arm of the Inductance control, R2, and the terminal of J1 that connects to R1. Mark off on the dial every 500 ohm points on R2 to 10,000 ohms. Disconnect the ohmmeter and solder the wires to the arm of the Inductance control, R2.

Connect the batteries and turn S2 to on. No warm up time is necessary. Rotate the sensitivity switch until the meter indicates half scale. Connect an inductance (RF or
filter choke) to J1. Set the Range switch, S1, to an appropriate range. Adjust the Inductance control, R2, to mid-range and rotate the Balance control, R7, for a dip in the indication of M1. Then alternately adjust R2 and R7 until the meter is at a maximum dip (minimum current reading). Increase sensitivity as required with the Sensitivity control, R8, to achieve maximum meter dip. Multiply the reading of the Inductance control, R2, by the setting of Range switch, S1, to find the inductance value.

The author used 10% components because they are readily available through normal retail sources. If better components are available, they can be used in the same circuit for higher accuracy than 10%.

Complete unit showing location of front panel controls, the meter, M1, and jack, J1, at top.

Primer on...the OSCILLOSCOPE

An electron stream wiggling across a phosphorescent screen will shed some green light on your waveform measurements

By Leo G. Sands

TThe oscilloscope is unquestionably the most versatile and useful electronic testing instrument you can have on your workbench-whether it be for hobby purposes or servicing. It is a voltmeter which measures voltage with respect to time and presents its measurements in graph form.. But first, let's look into how it works.

The oscilloscope heart is a cathode ray tube (CRT) which is similar to a television picture tube except that its beam is moved by applying voltage to its deflection flates. In a TV picture tube the beam is moved by

OSCILLOSCOPE

applying current to its deflection coils. Almost all CRT's employ electro-static deflection whereas almost all modern TV picture tubes employ electro-magnetic deflection.

Inside the CRT. Electrons are emitted from a cathode and are hurled through various grids toward a phosphorescent screen as shown in Fig. 1. When the electrons strike the screen, the screen glows at the point of impact with the electrons. The electron stream passes through a space which has four plates that are used for deflecting the electron stream. Fig. 2 shows a dot which is the electron beam, the two plates marked "V" are the vertical deflection plates and those marked " H " are the horizontal deflection plates.

Fig. 1. Electron gun detail drawing.

If we apply a DC voltage to the horizontal deflection plates, as shown in Fig. 3, the dot (electron stream) moves toward the plate at the right which is positively polarized. If we reverse the polarity of the voltage, the dot will move to the left.

By applying a DC voltage to the vertical deflection plates, as in Fig. 4, the dot is moved upward-reversing the polarity of the voltage -moves the dot downward. And, if we apply DC voltages to both sets of plates as in Fig. 5, the dot can move in an oblique direction.

Now, if we use two potentiometers to make it possible to adjust the voltages and their relationship as well as their polarity, as shown in Fig. 6, the dot can be moved to any point on the screen. By turning R1, we can make
the top vertical deflection plate positive or negative- R 2 lets us do the same to the horizontal deflection plates.

Voltmeter. We can measure DC voltage, using the circuit shown in either Fig. 3 or 4 , if we know the sensitivity of the CRT, by noting how far the dot moves from its normal position on the screen.

It is possible to measure AC voltage by applying it to the vertical deflection plates, as shown in Fig. 7. As the AC voltage rises, falls and reverses in polarity, the dot is moved up and down with each AC cycle. A vertical line is painted on the screen and remains there there until the AC voltage is removed. The position of the vertical line can be moved to the left or right by adjusting potentiometer

Fig. 2. Undeflected dot (electron stream).

Fig. 3. Dot moves right to positive plate.
R. The length of the vertical line is determined by the level of the AC voltage.

Measuring Time. By applying a sawtooth voltage to the horizontal deflection plates, as shown in Fig. 8(A), the dot moves at even speed from the left side of the screen to the right. The sawtooth voltage rises evenly from zero to its maximum value and then drops abruptly to zero, and keeps repeating itself, as shown in Fig. 8(B).

If it requires one second for the sawtooth voltage to rise from zero to its maximum value, the dot moves from the left to the right

Fig. 4. Dot moves up to positive plate.

Fig. 5. Dot moves right and up to corner of the two positive plates.
in one second. When the voltage drops abruptly to zero, the dot moves back to the left at such high speed that it can't be seen. But during its left to right excursions, the dot can be seen traversing in a straight horizontal direction. Thus, we can measure time. If we apply a DC voltage across the vertical plates, the horizontal trace will be moved either up or'down, depending upon the polarity of the DC voltage. But, it will remain horizontal as long as the DC voltage is steady.

Now, if we set the sawtooth oscillator to generate one sawtooth wave once every $1 / 6$ th of a second, the horizontal trace will appear as a solid line because it retraces itself so fast that the eye thinks it sees it all the time.

Fig. 6. Position of dot can be varied by adjusting potentiometers R1 and R2.

When we apply a 60 -cycle $A C$ voltage to the vertical deflection plates, and a 60 -cycle sawtooth voltage to the horizontal deflection plates, as shown in Fig. 9, the AC voltage waveform will appear on the screen. Fig. 10 shows the waveform for one and two sawtooth cycles. If the sensitivity of the CRT is known, we can determine the peak-to-peak voltage of the AC signal by measuring the distance between its positive and negative waveform peaks.

At the Beginning. The forerunner of the oscilloscope was the oscillograph. In a very simple oscillograph, a paper tape moves at a steady speed and a pen writes on it as its arm is moved by a meter movement, as shown in Fig. 11. The swing of the pen, as indicated by the trace it writes, is determined by the level of the voltage being measured; time is measured by the speed of the paper tape travel. Obviously, such an instrument cannot be used to examine high frequency signals because of the slow tape speed and the inertia of the pen mechanism.

Fig. 7. A rapidly moving $A C$ signal will cause a vertical line trace.

An oscilloscope, on the other hand, is an electronic device capable of high speed operation. A typical oscilloscope is shown in Fig. 12. While we have shown direct connections to the deflection plates in Figs. 2 through 9, an oscilloscope employs amplifiers as shown in Fig. 13, and fairly complex sweep circuits.

What's up front. The scope (abbreviation for oscilloscope) shown in Fig. 12 has several front panel adjustments. The focus (sharpness of dot) is adjusted with the upper left hand knob, and the brightness of the dot with the upper right hand knob. The vertical position of the dot may be adjusted with the knob at the left near the bottom of the screen, and its horizontal position with the knob on the opposite side.

OSCILLOSCOPE

The center knobs (one over the other) are used for selecting the sweep rate (sawtooth frequency). The gain of the vertical amplifier is adjusted by the dual knob at the lower left (vertical sensitivity) and the horizontal gain by the dual knob at lower right.

Connections to the vertical and horizontal inputs are made at the binding posts at the bottom of the front panel. The slide switch at the lower left hand corner is usually set to AC except when a DC voltage or an AC

Fig. 8. A horizontal line trace occurs when $A C$ signal is on horizontal plates.
signal with DC imposed is to be observed. The sawtooth signal generated within the scope is available for external use at the pin jack in the lower right hand corner.

With the vertical gain set to maximum, and the horizontal gain set to zero, a vertical line will appear on the screen which will be one centimeter in length for each 18 millivolts (0.018 volts) of input signal applied to the vertical input. By turning up the horizontal gain and adjusting the sweep frequency , the waveform of the signal applied to the vertical input will be seen on the screen. The higher the voltage applied to the vertical input terminals, the lower the vertical gain control setting.

Using a Scope. There are countless uses for a scope. In Fig. 14, a set-up is shown for observing a 60 -cycle $A C$ signal. Transformer T is a 6.3 -volt filament transformer and R is a potentiometer of any convenient value and functions as a variable voltage divider. The adjustable AC voltage is applied to the vertical input terminal and the " G " terminal

Fig. 9. An $A C$ sinusoidal wave can be seen when a sawtooth signal is applied to the horizontal plates.
which is grounded and is common to both the vertical and horizontal inputs. By adjusting the vertical and horizontal gain controls, and the sweep frequency, we can observe a single cycle or several cycles (by increasing sweep frequency to a multiple of 60 cycles) of the 60 -cycle signal. By adjusting R, changes in the amplitude of the applied AC signal can be seen.

Higher frequency signal waveforms are observed by connecting the output of a signal generator to the scope's vertical input as shown in Fig. 15. If the signal generator is a sine wave audio frequency (AF) oscillator, we can look at its output waveform and note what readjustment of the scope is necessary as we change the frequency.

If the signal generator is a combination sine wave/square wave type, it can be set to generate square waves and observe their waveform on the scope screen. By connecting a capacitor, C , in series with the generator output lead and a potentiometer (connected as rheostat) across the vertical input, as shown in Fig. 16, we can observe the effect of this R-C network on sine wave and square wave signals at various frequencies. When R is a one-megohm potentiometer and C has a value of 0.005 mfd , low frequency square

Fig. 10. The numbered points on the two waveforms occur at the same time. This way you can see how trace is developed.
———PAPER MOVEMENT

Fig. 11. The oscillograph is an electromechanical device that places an inked trace on a moving strip of paper.

Fig. 12. The EICO 435 oscilloscope, made from a kit, is typical of many models available at moderate prices.
waves can be converted into pulses whose width can be varied by adjusting R. Also, when using a sine wave signal, we can observe how C and R affect frequency response, particularly at low audio frequencies. This demonstrates how the frequency of an audio

Fig. 13. Block diagram of a typical oscilloscope designed for workbench use.
amplifier is affected by tho values of interstage coupling capacitors and associated g-id resistors.

By putting R in series with the signal generator output lead and C across the scope's vertical input, we see other effects on we.ve shape and amplitude with respect to frequency.

Looking at RF. If the signal generator is an RF oscillator and is connected to the sccpe as shown in Fig. 15, we can observe RF waveforms when the signal generator is set to produce an unmodulated signal. The highest frequency to which the signal generator can

Fig. 14. Set-up for observing 60-cycle AC.

Fig. 15. Signal generator connect to oscilloscope's horizontal input terminals.

Fig. 16. By connecting a signal diode across resistor R you can discover how radio AM signals are detected.
be set and still be able to discern the waveform depends upon the frequency response characteristics of the scope. Using the scope shown in Fig. 12, it was possible to observe and lock in signals up to 12 mc . Although this scope has a rated frequency response of

OSCILLOSCOPE

DC to 4.5 mc , it is useful at higher frequencies, but the vertical size of the waveform becomes smaller at frequencies above 5 mc or so.

Turning up the RF signal generators modulator on (amplitude modulation-AM), we can see what an AM radio signal looks like (see Fig. 17). Now, by using the hook-up shown in Fig. 16 and adding a crystal diode across R, we can see how a detector works.

nص $\iint \sqrt{ } \begin{aligned} & \text { UNMODULATED } \\ & \text { RF SIGNAL }\end{aligned}$

THIS HALF
\leftarrow SHEARED
MODULATED RF SIGNAL AT DETECTOR OUTPUT

Fig. 17. Most signal generators have modulated and unmodulated outputs. These and detected signal (bottom) can be viewed.

It cuts off part of the waveform and allows us to take a look at the audio modulating signal.

Trouble-shooting. Now that we have learned the basics of using a scope, we can use it as a signal tracer. We need a lowcapacity probe which can usually be purchased at most radio parts stores. The schematic of a low frequency probe is shown in

Fig. 18. Probes reduce circuit loading.

Fig. 18. The lead to the vertical input terminal of the scope is the inner conductor of a shielded cable. The ground terminal is connected to the shield of the cable.

The pin of the probe is touched to the circuit being checked and the ground clip is fastened to the chassis of the device being checked. The signal passes through R and C which are connected in parallel. Resistor R usually has a high value around 33 meg ohms and C usually has a value of a few picofarads (micro-microfarads). This R-C network reduces the level of the signal reaching the scope and C makes the probe favor higher frequencies, and at the same time re-

Fig. 19. Audio output from an amplifier can be best rated by observing on 'scope.
duces the loading effect on the circuit being checked.

By touching the probe pin to the grid and then the plate of every stage of a radio receiver or audio amplifier, when a signal is present, it is possible to view the waveform of the signal at these points. When checking RF and IF circuits, the waveform will look something like that shown in Fig. 15. When checking audio circuits, the waveforms of the music or speech will be seen.

Audio. The characteristics of an audio amplifier, or the audio section of a radio receiver, may be observed by feeding the output of an audio signal generator into the audio amplifier input as shown in Fig. 19.
(Continued on page 130)

NEW! LAFAYETTE DELUXE ALL-TRANSISTOR 5-WATT DUAL CONVERSION C.B.

 TRANSCEIVER with TRUE MECHANICAL FILTER Model HB-500- Range Up to 20 Miles or More
- 12 Crystal Transmit Positions
plus 12 Crystal Receive Positions
- 23 Channel Tunable Receiver
- 15 Transistors, 3 Diodes, 1 Zener Diode, 1 Thermistor
- 12V DC Mobile Operation (117 VAC Operation with optional AC power supply)
- With Channel 12 Transmit and Receive Crystals, Mobile Mounting Bracket, Push-to-Talk Dynamic Mike, Crystal for Dual Conversion, DC Cable
- imported

Lafayette 12-TRANSISTOR C.B. WaLKIE TALKIE Model HE-100

$39.95{ }_{\substack{2,8,86}}^{\substack{2,1 \pi}}$

Variable Squelch Reduces Background Noise

- Separate Microphone and Speaker for Better Modulation and Increased Range
- optional Plug-in 117 Volt AC Power Pack
With Leather Case, Earphone, Telescop. ing Antenna, Batter. ies, Crystals for Channel 10 Imported
Mail Order and L. I. Sales Center 111 Jericho Turnpike, Syosset, L. I., New York

NEW! LAFAYETTE 70-WATT COMPLETE AM.FM STEREO.RECEIVER Model LR:800
Sust Add Speakers and Enjoy FM, FM Stereo and HIgh.Quality AM Reception

- Powertul 70.Watt Ampififer plus Com. plete Preamplifier plus AM Tuner plus FM -Tuner plus FM Stereo Tuner - on One Compact Chassis
- FM "steres search" Circuit
- Numistor "Front End" - Imported

La avette Radio Electronics
LAFAYETTE 4-TRACK STEREO TAPE RECORDER Model RK-137A

Features 4-Tuack Stereo Playback* and 4-Track Monaural Riscord/ Playback

39.50

99.1511
*Adaptable to stereo playback

- Takes Fuill 7" Reel of Tape
- 2 speeds- $33 / 4$ and $71 / 2$ ips
- 2.Tone Carrying Case with Jynamic Mike, Shielded Patch Cords, "' Take-邖 Reel Imported 1 Dept. EXA5.1 P.O. Box 10 Syosset, L. I., N. Y. 11791
[. Send me the FREE 1965 Lafayette Catalog 650
!
\square
\$.
(Prices do not include shipping charges).

ELECTRONIC PARTS

1. This catalog is so widely used as a reference book, that it's regarded as a standard by people in the electronics industry. Don't you have the latest Allied Radio catalog? The surprising thing is that it's free!
2. The new 440 -page 1965 edition of Lafayette Radio's multi-colored catalog is a perfect buyer's guide for hif'ers, experimenters, kit builders, CB'ers and hams. Get your free copy, today!
3. Progressive "Edu-Kits" Inc. now has available their new 1964 catalog featuring hi-fi, CB, Amateur, test equipment in kit and wired form. Also lists books, parts, tools, etc.
4. We'll exert our influence to get you on the Olson mailing list. This catalog comes out regularly with lots of new and surplus items. If you find your name hidden in the pages, you win $\$ 5$ in free merchandise!
5. Unusual scientific, optical and mathematical values. That's what $E d$ mund Scientific has. War surplus equipment as well as many other hard-to-get items are included in this new 148 -page catalog.
6. Bargains galore, that's what's in store! Poly-Paks Co. will send you their latest eight-page flyer listing the latest in merchandise available, including a giant $\$ 1$ special sale.
7. Whether you buy surplus or new, you will be interested in Fair Radio Sales Co.'s latest catalog-chuck full of buys for every experimenter.
8. Want a colorfulcatalog of goodies? John Meshna, Jr, has one that covers everything from assemblies to zener diodes. Listed are government surplus radio, radar, parts, etc. All at unbelievable prices.
9. Are you still paying drugstore prices for tubes? Nationwide Tube Co. will send you their special bargain list of tubes. This will make you light up!
10. Burstein-Applebee offers a new giant catalog containing 100 's of big pages crammed with savings including hundreds of bargains on hi-fi kits, power tools, tubes, and parts.
11. Now available from EDI (Electronic Distributors, Inc.) a catalog containing hundreds of electronic items. $E D I$ will be happy to place you on their mailing list.
12. VHF listeners will want the latest catalog from Kuhn Electronics. All types and forms of complete receivers and converters.

HI-FI/AUDIO

13. Here's a beautifully presented brochure from Altec Lansing Corp. Studio-type mikes, two-way speaker components and other hi-fi products.
14. For the love of mikes! Astatic Corp. has lots. Studio types, ham types, recording types, etc. See its catalog sheets for the details.
15. A name well-known in audio circles is Acoustic Research. Here's its booklet on the famous AR speakers and the new AR turntable.
16. Garrard has prepared a fourcolor booklet on its full line of automatic turntables. Accessories are detailed too.
17. Two brand new full-color booklets are being offered by ElectroVoice, Inc. that every audiophile should read. They are: "Guide to Outdoor High Fidelity" and "Guide to Compact Loudspeaker Systems.'
18. Speakers and enclosures from Argos Products Co. feature a new and novel well-mounting system. To find out more, Argos will be happy to send literature.
19. A valuable 8-page brochure from Empire Scientific Corp. describes technical features of their record playback equipment. Also included are sections on basic facts and stereo record library.
20. Tape recorder heads wear out. After all, the head of a tape deck is like the stylus of a phonograph, and Robins Industries has a booklet showing exact replacements. Lots of good info on how the things are built, too.
21. Wharfedale, a leading name in loudspeakers and speaker systems, has a colorful booklet to send to you on its product line. Complete with prices, it is a top-notch buyers guide.
22. A wide variety of loudspeakers and enclosures from Utah Electronics lists sizes shapes and prices. All types are covered in this 16-page heavily illustrated brochure.
23. Here's a complete catalog of high-styled speaker enclosures and loudspeaker components. University is one of the pioneers in the field that keeps things up to date.
24. When a manufacturer of highquality high fidelity equipment produces a line of kits, you can just bet that they're going to be of the same high quality! H. H. Scott, Inc., has a catalog showing you the full-color, behind-the-panel story.
25. An assortment of high fidelity components and cabinets are described in the Sherwood brochure. The cabinets can almost be designed to your requirements, as they use modules.
26. Very pretty, very efficient, that's the word for the new Betacom intercom. It's ideal for stores, offices, or just for use in the home, where it doubles as a baby-sitter.

TAPE RECORDERS AND TAPE

30. "All the Facts" about Concord Electronics Corporation tape recorders are yours for the asking in a free booklet. Portable battery operated to four-track, fully transistorized stereos cover every recording need.
31. "The Care and Feeding of Tape Recorders" is the title of a booklet that Sarkes-Tarzian will send you. It's 16 -pages jam-packed with info for the home recording enthusiast. Includes a valuable table of recording times for various tapes.
32. You can learn lots about tape recorders. Big tape recorders for studios, little tape recorders for business men, all kinds of tape recorders from American Concertone.
33. "40 and More Ways to Use Your Roberts Tape Recorder" shows how to get the most enjoyment from your tape recorder for "your family growing up," language lessons, speeches, even synchronized sound with slides and home movies. Yours for the asking from Roberts Electronics.
34. The 1964 line of Sony tape recorders, microphones and accessories is illustrated in a new 16-page full color booklet just released by Superscope, Inc., exclusive U.S. distributor.
35. If you are a serious tape audiophile, you will be interested in the new Viking of Minneapolis line-they carry both reel and cartridge recorders you should know about.

HI-FI ACCESSORIES

38. An entirely new concept in customizing electron tubes has generated a new replacement line. Gold Lion tubes give higher output and lower distortion than ordinary production high-fidelity tubes.

KITS

41. Here's a firm that makes everything from TV kits to a complete line of test equipment. Conar would like to send you their latest catalog-just ask for it.
42. Here's a 100 -page catalog of a wide assortment of kits. They're high-styled, highly-versatile, and Heath Co. will happily add your name to the mailing list.
43. Want to learn about computers the easy way? Brochure from Digication Electronics describes its line of transistorized kits.

AMATEUR RADIO

45. Catering to hams for 29 years, World Radio Laboratories has a new FREE 1965 catalog which includes all products deserving space in any ham shack. Quarterly fliers, chockfull of electronic bargains are also available.
46. A long-time builder of ham equipment, Hallicratters, Inc. will happily send you lots of info on the ham, CB and commercial radio-equipment.
47. Here's a goodly assortment of literature covering the products of the Dow-Key Co. They make coaxial relays, switches, and preamps for hains and CB'ers.

CITIZENS BAND SHORT-WAVE RADIO

48. Hy-Gain's new 16 -page $C B$ antenna catalog is packed full of useful information and product data that every CB'er should know about. Get a copy.
49. Want to see the latest in communication receivers? National Radio Co. puts out a line of mighty fine ones and their catalog will tell you all about them.
50. Are you getting all you can from your Citizens Band radio equipment? Cadre Industries has a booklet that answers lots of the questions you may have.
51. Antennas for CB and ham use as well as for commercial installations is the specialty of Antenna Specialists Co. They also have a generator for power in the field.
52. When private citizens group together for the mutual good, something big happens. Hallicrafters, Inc. is backing the CB React teams and if you're interested in CB , circle \#53.
53. A catalog for CB'ers, hams and experimenters, with outstanding values. Terrific buys on antennas, mikes and accessories. Just circle \#54 to get Grove Electronics free 1964 Catalog of Values.
Also see items 46 and 47.
54. Interested in $\mathbf{C B}$ or businessband radio? Then you will be interested in the catalogs and literature Mosley Electronics has to offer.

SCHOOLS AND EDUCATIONAL

56. Bailey Institute of Technolagy offers courses in electronics, basic electricity and drafting as well as refrigeration. More information in their informative pamphlet.
57. National Radio Institute, a pio neer in home-study technical training, has a new book describing your opportunities in all branches of electronics. Unique training methods make learning as close to being fun as any school can make it.
58. Interested in ETV? Adler Electronics has a booklet describing educational television and this goes into a depth study of ETV in all its ramifications. There's a good science fair project here for someone!
59. For a complete rundown on curriculum, lesson outlines, and full details from a leading electronic school, ask for this brochure from the Indiana Home Study Institute.
60. Facts on accredited curriculum in E. E. Technology is available from Central Technical Institute plus a 64 page catalog on modern practical electronics.

ORGANS

61. A complete booklet and price list giving you the inside data on Schober Organs are yours for the asking.

AUTOMOTIVE

65. Want power plus for your anto? New Transistorized Ignition adds 30% more MPG. 3 to 5 times more spark plug life. Lower maintenance cost. Free catalog and instruction booklet.

TEST EQUIPMENT

67. Get the most measurement value per dollar." That's what Electronic Measurements Corp. says. Looking through the catalogue they send out, they very well mighi be right!

TELEVISION

69. Interested un tackling a TV kit? Arkay International, lnc. will send you full literature (including a schematic) of this truly educationa kit. It's used in many of the electronic schools.
70. The first entry into the coler-TV market in kit form comes fron the Heath Company. A do-it-yourself money saver that all TV watchers should know about.
71. The smallest television set to date is featured in this beautiful prepared brochure from SONY Corp. You'll be amazed at the variet $/$ this firm offers.
72. Get your 1964 catalog of Cisin's TV, radio, and hi-fi service tooks. Bonus-TV tube substitution guide and trouble-chaser chart is you:s for the asking.

SLIDE RULE

75. Want to find rapid solutions to complicated math problems? Solve interest and ratio, log and trig problems with 10 -scale slide rule. Alsynco will send complete information.

TOOLS

78. Learn about Xcelite's line of pliers and snips, specialized for radio, TV and electronic work. Xzelite's hand tools offer many adyantages worth looking into-get bulletins N464 and N664.

Radio-TV Experimenter, Dept. LL-722
505 Park Avenue, New York, N. Y. 10022
Please arrange to have the literature whose numbers I have encircled senf to me as soon as possible. I am enclosing 25§ (no stamps) to cover handling charges.

I am a subscriber
Indicate total number of booklets requested

	1	2	3	4	5	6	7	8	9	10	11	12	13
Be	14	15	16	17	18	19	20	21	22	23	24	25	26
Sure To	27	28	29	30	31	32	33	34	35	36	37	38	39
Enclose	40	41	42	43	44	45	46	47	48	49	50	51	52
254	53	54	55	56	57	58	59	60	61	62	63	64	65
	66	67	68	69	70	71	72	73	74	75	76	77	78
	A1	A2	A3	A4	A5	A6	A7	A8	A9	B1	B2	B3	B4
	B5	B6	B7	B8	B9	See New Products column-pages $27-39$							

NAME (Print clearly)
ADDRESS
CITY
STATE
ZIP CODE
Service on this coupon expires July 1, 1965

Volume 43, No. 1

An up-to-date Bruadcasting Directory of North American AM, FM and TV Stations. Including a Special Section on World-Wide Short-Wave Stations

WHITE'S RADIO LOG was founded by Charles DeWitt White in Providence, R.I. as an extension of his earlier publishing activities which, in turn, were a continuation of the business established by his father: the publication of city directories, street guides and municipal tax guides.

In the early days of broadcasting, the compilation of a list of operating stations and their frequencies was no simple task. Prior to the Dill-White Radio Act of 1927, if a feed merchant, auto dealer, barber or undertaker wanted to advertise his wares or services, he had only to select a frequency and go on the air.

Nevertheless, Mr. White's directory publishing experience had convinced him that he could successfully assemble a radio \log, and in 1924 he justified his conviction with The Rhode Island Radio Call Book, following this shortly after with White's Triple List of Radio Broadcasting Stations.

In 1927 the two publications were merged, nationwide distribution was established and in ensuing years related publications, such as

[^1]Sponsored Radio Programs, Radio Announcer's Guide, Short-Wave Schedule Guide and a special Canadian edition of White's Radio Log (which has had its title shortened to the one it bears today), were also issued. The Log reached a combined circulation of well over $1,000,000$ copies at one time.

The 1927 Fall-Winter issue of the Log listed 701 U.S. Stations. Most powerful were WEAF (now WNBC), N. Y., with 50,000 watts, KDKA, Pittsburgh, WGY, Schenectady, and WJZ (now WABC), N. Y., each with 30,000 watts; WGN-WLIB, Chicago, with 15,000 watts; and Boston's WBZ, also with 15,000 . Five stations listed (one a Junior High School in Norfolk, Va.) operated on a mighty 5 watts.

In 1957, Mr. White, who was then 76 years old, died in his sleep. His heirs sold all rights in and to the Log to the publisher of Science \& Mechanics and in January of 1958 the first edition of White's Radio Log, Vol. 35, No. 1, was published as a special supplement to the Radio-TV Experimenter.

From 1958 to the end of 1961, the Log was published in each semiannual issue of Radio-TV Experimenter until the beginning of 1962 when the magazine was published quarterly. Beginning with the February/March 1964 issue, Radio-TV ExperiMENTER has been published bi-monthly.

With six issues a year hitting the news-
stands throughout the United States, Canada and many other countries, it was necessary that White's Radio Log undergo its first major format change in over two decades. Iricreased listings due to the growth of VHF and UHF television and FM broadcasting have made it an almost impossible task to present the complete Log every two months with the listing accuracy demanded by the users. Add to these listings, stations located in Canada, Mexico and West Indies, and you can begin to imagine the enormous task it is to assemble White's Radio Log. To further increase the scope of the Log, the ShortWave Section has been revised, and the station listings increased in scope and number. Complete details on the Short-Wave Section appear immediately before that section.

In this issue of White's Radio Log, over 4,500 United States and Canadian AM broadcast stations, and 800 television stations are listed, not to mention the completely revised shortwave station list. Errors will appear in spite of our constant checking. In fact, some listings are incomplete as we go to press because information from the FCC was lacking. If you spot an error or know of information we are lacking, please write giving complete data: station call sign, location, frequency, power, daytime or 24 -hour operation. Write to Editor, White's Radio Log, Radio-TV Experimenter, 505 Park Avenue, New York, New York 10022.

In this issue of White's Radio Log we have included the following listings: U.S. AM Stations by Frequency, Canadian AM

Stations by Frequency, U.S. Commercial Television Stations by States, U.S. Educational Television Stations by States, Canadian Television Stations by Cities, FM Stereo Stations, and the World-Wide Short-Wave Stations.

In our next issue, April/May, 1965, the Log will contain the following listings: U.S. AM Stations by Location, U.S. FM Stations by States, Canadian AM Stations by Location, Canadian FM Stations by Location, Mexican and Cuban AM Stations by Location, and the expanded Short-Wave Section. The short-wave listings will always be completely revised in each issue of White's Radio Log to insure 100 per cent up-to-date information leaving nothing to chance.

In the June/July 1965 issue of RadioTV Experimenter, the Log will contain the following listings: U.S. AM Stations by Call Letters, U.S. FM Stations by Call Letters, Canadian AM Stations by Call Letters, Canadian FM Stations by Call Letters, and the expanded Short-Wave Section.

Therefore, in any three consecutive 1964 or 1965 issues of Radio-TV Experimenter, you will have a complete cross-reference listings of White's Radio Log that is always up-to-date. The three consecutive issues are a complete volume of White's Radio Log that offers up to the minute listings that can not be offered in any other magazine or book. If you are a broadcast band DX'er, FM station logger, like to photograph distant TV test patterns, or tune the short-wave bands, you will find the new White's Radio Log format an unbeatable reference.

QUICK REFERENCE INDEX

U.S. AM Stations by Frequency. 108 Canadian AM Stations by Frequency.............. . 118 U.S. Commercial Television Stations by States. ... 120
U.S. Educational Television Stations by States. . . . 122 Canadian Television Stations by Cities.......... . . 122 World-wide Short-Wave Stations.................. 123

U.S. AM Stations by Frequency.

U. S. stations listed alphabetically by states within groups. Abbreviations: Kc., trequency in kilocycles; W.P., watt power; d-operates daytime only. Wave length is given in meters.

Kc. Wave Length W.P.|Kc. Wave Length W.P.|Kc. Wave Length W.P.|Kc. Wave Length W.P.

WF MC Goldsboro, N.C. WOHS Shelby, N.C.
WMGS Bowling Green, Ohio K80Y Medford, Oreg. WNAK Nanticoke, Pa, WPAL Charleston, S.C. WLIL Lenoir. Tenn. KPCN Grand Prairio, Tex. KSVN Ogden, Utah WPIK Alexandria, V WMNA Gretna, Va. KULE Ephrsta, Wash.

740-405.2

WBAM Montgomery, Ala. KUEQ Phoenix, Ariz. KCBS San Francisco, Callf. KSS Colo. Springs, Colo. KVFC Cortaz, Colo. WKMK Blountston, Fla WKIS Orlando Fla. KYME Boise, dan KBOE Oskaloosa, Iowa TAO Cambridge Mas KPAM Cambrige, Mass. KPGM Carlsbad. N.Mex. WMBL Morehead City, N.C KRMQ Mount Airy, N.C KRMG Tulsa, Okla.
WIAC San Juan. P.Rico WBAW Barnwell, S.C WIIG Tullahoma, Tenn. KTRH Houston, Tex. KGMC Texarkana, Tex. WBCI Williamsburg. Va.
750-399.8
WSB Atlanta, Ga.
WBMD Baltimore, Md. KMMD Baitimore, Md. WHEB Portsmouth, 'N.H. KSEO Durant. Okla. WPDX Clarksburg, W.Va
WHA Madison, Wis.
760-394.5
KGU Honolulu, Hawali WנR Detroit, Mich. WCPS Tarboro, N.C.
WORA Mayaguez, P.R.

770-389.4
KUOM Minneapolis, Minn. 5000d
WCAL Norihfield, Minn.
WEW St. Louis. Mo.
KOB Albuquerque, N. Mex. WABC New York, N.Y
KXA Seattle,
$780-384.4$
WB8M Chicago, Ill. WCKE Dunn N C WBEO Forest City, N.C. KSPI Stillwater. Okla.
WAVA Arlington, Va.
790-379.5
 1000d 10000 d
50000 1000
1000 d 10000
1000 1000
1000 d
5000 5000
$\begin{array}{r}5000 \\ 500 \mathrm{~d} \\ \hline\end{array}$ 5000
1000 d
250 d $250 d$
1000 d 1000 d
250 d $250 d$
$1000 d$ 5000d

50000 1000 d
10000 d 1000 d $250 d$
50000 1000 d 5000 d 10000
50000 50000
1000 d
-

5000 d
1000 d 50000
50000 1000

$$
\begin{gathered}
50000 \\
1000 \mathrm{~d} \\
1000 \mathrm{~d} \\
1000 \mathrm{~d} \\
250 \mathrm{~d} \\
1000 \mathrm{~d}
\end{gathered}
$$

anding, Utah

1000 d 1000 d 1000 d

1000 d
1000 d
응

1000 d

500 d
1000 d
WMGY Montgomery, Ala. 5000 d KINY Juneau, Alaska 5000d
1000 d KAG Crossett, Ark. 1000 d 1000 d KUZZ Bakersfield, Calif.
KDAD Wead, Calif. KDAD Wead, Calif. KBRN Erighton, Colo WLAD Danbury, Conn
WSUZ Palatka. Fta. WSUZ Palatka. Fia.
WJAT Swainsboro, G KXIC lowa City. WBOK New Orleans, La WCCM Lawrence. Mass. KREI Farmington, M
KDBM Dillon, Mont KDBM Dillon, Mont.
WKDN Camden, N.J. WKDN Camden, N.J.
KJEM Okla City, Okla. KPDQ Portland, Oreg. WCHA Chambersbu WEAB Greer, S.C WDEH Sweetwater,
KDDD Dumas. Tex. KBUH Brigham City, Utah WSVS Crews, Va. WKEE Huntington, W. Va. WDUX Waupa
$810-370.2$
KGO San Franelseo, Callf. WIGO Indianapolis, Ind WYRE Annas City, Mo.
KGY Kansas Scheneetady, N. Y. WKBC N. Wilkesboro. N.C. W

000

WJAC Johnstown. Pa

 WEEU Reading, Pa.WABA Aquadilia, P. WABA Aquadilia, P.R
WRAP Norfolk, $V a$. KTAC Tacoma.
$860-348.6$
WHRT Hartselle, Ala. WAMI Opp, Ala. KIFN Phoenix, Arlz. KOSE Osceola, Ark.
KWRF Warren, Ark. KWRF Warren, Ark.
KTRB Modesto. Callf. WOWW Naugatuck, Conn. WAZE Clearwater, Fla WKKO Coeoa, Fla. WERD Atlanta, Ga. WDMG Douglas, Ga. WMRI Marion, Ind.
KWPC Muscatine, KWPC Muscatine, Iowa KOAM Pittsburs, Kans.
WSON Henderson, Ky. WSON Henderson, Ky.
WAYE Dundalk, Md. WAYE Dundalk, Md.
WSBS Gt. Barrington, Ma
KNU New Ulm. Minn. KNUJ New Ulm. Min
KARS Belen, N. MBx.
KAR WCEC Rocky Mount, N.C. 1000 d
WEDC McKeesport, Pa. 1000 d
WK. $\begin{array}{ll}\text { WKVM San Juan, P.R. } & 25000 \\ \text { WMTS Murfreesboro, Tenn, } & 5000 \text { d }\end{array}$ 820-365.6 WAIT Chicago, 111 . WIKY Evansville, Ind. WOSU Columbus. Ohio WFAA Dallas, Tex.
WBAP Ft. Worth. Tex

830-361.2

KIKI Honolulu, Hawall WCCO Minneapolis, Minn. KOFI Kalispell. Mon KBOA Kennet, Mo.
WNYC New York, N.Y. 840-356.9 WTUF Moblle, Ala. WHAS Louisville. Ky, 50000 850-352.7
WYDE Birmingham, Ala.
KICY Nome. Alaska KICY Nome, Alaska
KOA Denver, Colo. WRUF Gainesville, Fla.
WEAT W. Palm 8each. Fla. KIMO Hilo, Hawaii WHDH Boston, Mass.
WKBZ Muskogon, Mich. KFUD Clayton, Mo. WIX P WKX Raleigh, N.C W JAC Johnstown, Pa.
WEEU Reading, Pa.

ARS Belen, N. MBx.
WFMO Fairmont. N.
1000
500
50
50
50

1000
100
50
25
25
25
100
50
25
100
100
25
100
100
100
100
100
100
2
100
10
10
2

$$
\begin{gathered}
1000 d \\
5000 \\
5000 \\
5000 \\
5000
\end{gathered}
$$

250
5000050000
1000250d1000 d
1000 d1000 d1000 d$250 d$10000
$250 d$250 d500 d
1000 d
10005000 d
250 d250 d100001000 d
250500 d
250 d250 d
WCTA Adalusia, Ala.5000WWWR Russellville. Ala. 1000 d
KARK Little Rock, A fk. 5000
KARK Little Rock, Ark. 5000KLOC Ceres, Calif. \quad S00d
KDES Palm Springs, Calif, 1000 dKDES Palm Springs,
KVEC San Luis Obisp, Cal. 1000KREX Grd. Junction, Bolo. 5000
$890-336.9$
WLS Chicago, 111.KLMR Gamar, Colo.$\begin{array}{ll}\text { WHNC Henderson. N.C. } & 1000 \mathrm{~d} \\ \text { KBYE OkIa. City, Okla, } & 1000 \mathrm{~d}\end{array}$
900-333.1WATV Birmingham,
WGOK Mobile, Ala.
WOZK Ozark, Ala.WOZK Ozark, Ala.KPR8 Fairbanks, AlaskKHOZ Harrison, Ark.KBIF Fresno, Calif.KGRB West Covina, Cal.WJWL Georgetown, Del.WSWN Bello Glade, Fla.WMOP Ocala, Fla.WCGA Calhoun. Ga.
WCRY Macon, Ga.5000d WCRY Macon, Ga.2500d
2000 d
WEAS Savannah, Ga,Gis, Ida.KSIR Wichita, Kan.WKYW Louisville, Ky
WLSt Pikeville, Ky,WLSi Pikeville, Ky,
KREH Oakdale, La.WCME Brunswick, Malno1000 d
1000 d1000 d
1000 d1000 d
100001000 d
1000 d
250 d1000 d
250 d5000 d
1000 d$1000 d$
$1000 d$1000 d1000 d
250 d250 d
5000 d
1000 d5000 d
1000 d
250 d000d
250 d
000 d1000 d
5000 d5000 d
250 d
1000 dWATC Gaylord, Mith.KTIS Minneapolis, Minn.
WDDT Greenville, Miss.WDDT Greenville, Miss
KFAL Fulton, Mo.KFAL Fulton, Mo.
KJSK Columbus, NebrKJSK Columbus, Nebr
WOTW Nashau. N.H.WOTW Nashau, N.H.Y
WBRV Boonville. N.YWKAJ Saratoga Springs,$1000 d$
$1000 d$WMEG Eau Gallie, Fla.WGST Atlanta, Ga.WVOH Hazelhurst. Ga.
WGNU Granite City, ill.WMOK Metropolis. Ill.
WBAA W. Lafayette. Ind.KFNF Shenandoah, la.
WTCW Whitesburg, Ky.WBOX Bogalusa, La,WKOC Jonesboro, La.WPTX Lexington Pk., Md.
WMPL Hancock. Mict.WMPL Hancock, Miciı.
KDHL Faribault, Minn.KDHL Faribault, Minn.KWAD Wadena, Mirn.KRAM Las Vepas, NeKQEO Albuqueraue, Nex
WTTM Trenton. N.J.
WKRT Cortland, N. YWIRD Lake Placid. N.Y.
WBBB Burlington N.WBBB Burlington. N.C
WMNi Columbus, OhioWMN Columbus, OhioKGAL Lebanon. Oreg.WKVA Lewistown, PA.
WJAR Providence, R i.WJAR Providence, R.I.
WTND Orangeburg. S.C.WTND Orangeburg. S.C.
KEZU Rapid Cily, S.Dak.WLIV Livingston, Tern
KELP EI Paso, Tex.1000
1000
WAYN Rockingham, N.C.
WIAM Williamston, N.C.WIAM Williamston, N.C
KFNW Fargo, N.Dak.KFNW Fargo, N.Dak.
WCNS Canton, OhioWCNS Canton, OhioWFRO Fremont. Ohio
WCPA Clearfisid. Pa.WCPA Clearfield, Pa.
WFLN Philadelphia.WFLN Philadelphia, Pa.
WKXV Knoxville. Tenn.
WKXV Knoxville. Tenn
WCOR Lebanon, Tenn.
WCOR Lebanon, Tenn
KALT Atlanta, Tex.

1000	KALT Atlanta, Tex.
50000	KMCO Conroe, Tex.
1000	KFLD Floydada. Tex.

 1000 KFLD Floydada. Tex.
 \begin{tabular}{l|l}
 5000 \& KCLW Hamilton. Tex.

10000 \& WODY Bassett, Va.

10000 \& WAFC Staunton, Va.
\end{tabular}

10000	WAFC Staunton, Va,
10000	KUEN Wenateheo, Wash.

 Y. \(250 d\)
 $1000 d$
KTLW Texas City, Tex.
5000
500 wd
500 d
1000 d
5000$1000 d$
50001000 d
5000 d$1000 d$
$1000 d$$1000 d$
$1000 d$1000 d
500 d1000 d
1000
10001000
1000100010001000
5000 d
烩号-
1000
1000
5000
5000$1000 d$
$1000 d$1000 d
1000 d
1000KTLW Texas City, Tex. $\quad 1000 \mathrm{~d}$$\begin{array}{lr}\text { KITN Olympia, Wasth. } & 1000 \mathrm{~d} \\ \text { KXLY Spokane, Wasih. } & 5000\end{array}$$\begin{array}{ll}\text { WMMN Fairmont, W.Va. } & 5000 \\ \text { WOKY }\end{array}$
930-322.4WETO Gadsden. AlaKTKN Ketchikan, Alaska
KAPR Douglas, Ariz.1000 d
1000KAPR Douglas, Ariz.KHG Los Angeles, Calif.KHJ Los Angeles, Cal.KIUP Durango, Colo.WKSB Milford, Del.WHAN Haines City, Fla.WJAX Jacksonville, Fla.WKXY Sarasota, Fla.KSEI Pocatello, IdahoKSEI Pocatello, Ida
WTAD Quincy, IIWDVC Dadeville, Ala.500 d
5000
KLCN Blythev. Arlz.KAMD Camden. Ar Ar

Kc. Wave Length W.P.

 KENY Bellingham.Ferndale, WSAZ Huntington, W.VaKROE Sheridan, Wyo.
WLBL Auburndale, Wis.

940-319.0

KHOS Tueson, Ariz.
KFRE Fresno, Calif. WINE Brookfild Conn. WMNZ Miami, Fla, WMAZ Macon. Ga. KAHU Waipahu, Hawail
WMIX Mt, Vernon, KIOA Des Moines, low WCNO Shelbyille, Ky. WJOR South Haven, Mich WCPC Mouston, Miss.
KSWM Aurora, Mo.
KVSH Valentine, ${ }^{\text {Neb }}$ WFNC Fayettevilie, N.C. WCND Shel byille, N.Y. KGRL Bima, Ohio WESA Charieroi, Pa, WGRP Greenvilie, Pa. WGRP Groenvitio, Pa.
WIPR San Juan. P.R. KTON Beiton, Tex.
 KQOT Yakima. Wash.

950-315.6

WRMA Montgomery, Ala. KXJK Forrest City, Ark KFSA Ft, Smith, Ark. KIMN Denver, Calo. WLOF Orlando, Fila. WGTA Suando, Fla. WGOV Valdosta, Ga, KLER Orofino, 1daho WAAF Chicago, llit. WXLW Indianapolis, Ind. KOEL Oelwoin, la.
WBVL Barbourville. Ky. WORL Boston, Mass. WWJ Detroit, MIEh. KRSI St. Louis Park, Minn
WBKH Hattiesburg, Miss. KLIK Jefferson City, Mo. KLHS Lordsburg, N. Mex.
WHVW Hyde Park, N.Y. WBBF Rochester, N.Y. WPET Greens boro. N.C. KYES Roseburg, Ore.
WNCC Barnesboro, WPEN Philadelphia, Pa. WSPA Spartanburg, S.C. WAGG Franklin. Tenn. KDSX Denison-Sherman, Tex. KPRC Houston, Tex. KSEL Lubbock, Tex. KMER Kemmerer. Wash. KJR Seattle, Wash. WERL Eagle River, Wis.
WKAZ Charleston. W.Va. WKTS Sheboygan, Wis. KMER, Kemmerer, Wyo.
960-312.3
WBRC Birmingham, Ala. WMOZ Mobile, Ala,
WCVQ Kodiak, Alaska KOOL Phoenix. Ariz. KAVR Apple Valley. Calif. 50000 KNEZ Lompoc, Calif. WEL! New Haven, Conn. WGRO Lake City, Fla. WJCM SEbring, Fla. WRFC Albany. Ga. KSRA Athens, Ga. KSRA Salmon, Idaho. WSBT South Bend. Ind. KMA Shenandoah. lowa KROF Abbeville, La. Ky
WBOC Sallsbury, Md.

Ke. Wave Length W.P.|Kc. Wave Length W.P.

WEWO Laurinburg. N.C. WMVR Sidney. 0
WWEP Pittsburoh Pa. KRLO Dallas. Tex,
J090-275.1
KAAY Little Rock, Ark. WCRA Effingham. III. KHAI Honolulu, Hawai KNWS Waterloo, lowa WBAL Baltimore, Md. WILD Boston. Mass. WERE Garden City, Mich. WMWM Wilmington, 0 . KING Seattle. Wash.
1100—272.6
KFAX San Francisco, Calif. 50000 WLBB Carrollton. Ga. WHW Hempstead, N.Y. 10000 d WGPA Bethlehem. Pa.

1110-270.1

KRLA Pasadena, Cal. IPA Hilo Hawai WMBI Chicaso. III KFAB Omaha, Nebr. UBT Charlotte, N. KBNO Bend. oreg. WVJP Caguas, P.R. WHIM Providence. R. WPHC Waverly, Tenn. 1000 d

1120-267.7
WUST Bethesda. Md. WOL Buffalo, N.Y.
KCLE Cleburne, Tex
1130—265.3
KROU Dinuba, Calif. KSOO San Diego, Calit WK KH Shre, Hawai KWKH Shreveport, La WOGY Minneapolis
WGW Hoapols. Minn. 50000
$1140-263.0$
KRAK Sacramento, Calif. $\quad 50000$ WMIE Miami, Fla. SIV Pekin 111 KLPR Oklahoma City. Okta. WITA San Juan, P.R. P.R. 500 KORC Mineral W alls. S. Tox. 10000 WRVA Richmond. Va. 50000

1150—260.7

WBCA WGEA	Bay Minette, Ala. Geneva, Ala.	$\begin{aligned} & 1000 \mathrm{~d} \\ & 1000 \mathrm{~d} \end{aligned}$
WJRD	Tuscaloosa, Ala.	5000 1000
KXLR	No. Little Rock, Ark.	5000
KRKO	Los Angeles, Calif.	5000
KJAX	Santa Rosa, Calif.	5000
KGMC	Englewood, Col	1000d
WCNX	Middletown,	000d
WDEL	Wilmington, 0	5000
WNDB	Daytona Beh., Fla	000
WTMP	Tampa, Fta.	5000d
WFPM	Fort Valley, Ga.	1000d
WJEM	Valdosta, Ga.	1000d
WGGH	Marion, III.	5000d
WJRL	Rockford. 11.	500 d
KWKY	Des Moines, lowa	1000
KSAL	Satina, Kans.	5000
WMST	Mt. Sterling, Ky.	500d
W LOC	Mumfordvilie. Ky.	1000d
WJB0	Baton Rouge, La.	5000
WGHM	Skowhegan, Maine	5000d
WHMC	Gaithersburg, Md.	1000
WCOP	Boston, Mass.	5000
WCEN	Mt. Pleasant. Mich.	000
KASM	Albany, Minn.	1000d
WXTN	Lexington, Miss.	500 d
KRMS	Osage Beach. Mo.	1000d
KSEN	Shelby, Mont.	1000
KDEF	Albuquerque, N.Mex	1000
WRUN	Utica, N.Y	5000
WBAG	Burlington. N.C.	1000d
WGBR	Goldsboro. N.C	5000
WCUE	Cuyahoga Falls. Ohio	
WIMA	Lima. Ohio	1000
KNED	MeAlester. Ok	000
K AGO	Klamath Falls. Oreg.	5000
W	Huntingdon. Pa.	
	Lehighto	l000d
WKPA	New Kensington.	. 1000 d

000 d
250 d
50000 000 d 30000

000
5000
1000
50000 000 0000 5000 d

500言

50000
250 d
5000
1000 d
50000
1000d
1000 d
50 d
50000 KIMM Rapid City, S. Dak.
WAPO Chattanooga. Tenn.
WCRK Moristown. Tenn.
WTAW Bryan. Tex.
KCCT Corpus Christi, Tex.
KIZZ ElPaso.Tex.
KVIL Highland Park, Tex.
KJBC Midland, Tex.
KPNG Port Neches. Tex.
KOLJ Quanah, Tex.
KBER San Antonjo. Tex.
KOFE Pullman, Wash.
KAYO Seattle, Wash.
KKEY Vancouver. Wash.
WABH Deerfleld, Va.
WELC Welch, W.Va.
WAXX Chippewa Falls, Wis.
WISN Milwaukee, Wis. KIMM Rapid City, S. Dak.
WAPO Chattanooga. Tenn.
WCRK Moristown. Tenn.
WTAW Bryan. Tex.
KCCT Corpus Christi, Tex.
KIZZ ElPaso.Tex.
KVIL Highland Park, Tex.
KJBC Midland, Tex.
KPNG Port Neches. Tex.
KOLJ Quanah, Tex.
KBER San Antonjo. Tex.
KOFE Pullman, Wash.
KAYO Seattle, Wash.
KKEY Vancouver. Wash.
WABH Deerfleld, Va.
WELC Welch, W.Va.
WAXX Chippewa Falls, Wis.
WISN Milwaukee, Wis. KIMM Rapid City, S. Dak.
WAPO Chattanooga. Tenn.
WCRK Morristown. Tenn.
WTAW Bryan. Tex.
KCCT Corpus Christi, Tex.
KIZZ EIPaso.Tex.
KVIL Highland Park, Tex.
KJBC Midland, Tex.
KPNG Port Neches. Tex.
KOLJ Quanah, Tex.
KBER San Antonjo. Tex.
KOFE Pullman. Wash.
KAYO Seattle. Wash.
KKEY Vancouver. Wash.
WABH Deorfleld, Va.
WELC Welch, W.Va.
WAXX Chippewa Falls, Wis
WISN Milwaukee, Wis. KIMM Rapid City, S.Dak.
WAPO Chattanooga. Tenn.
WCRK Morristown. Tenn.
WTAW Bryan. Tex.
KCCT Corpus Christi, Tex.
KIZZ EIPaso.Tex.
KVIL Highland Park, Tex.
KJBC Midland, Tex.
KPNG Port Neches, Tex.
KOLJ Quanah, TeX.
KBER San Antonjo. Tex.
KOFE Pullman, Wash.
KAYO Seattle, Wash.
KKEY Vancouver. Wash.
WABH Deerfield, Va.
WELC Welch, W.Va.
WAXX Chippewa Falls, Wis
WISN Milwaukee. Wis.

1160—258.5

WJJD Chicago. Ill. U 50000
1170—256.3
50000
50000 d
1000
5000 d
50000
50000
5000
$250 d$
50000 50000
1000 d
250d
1000 d
5000 d
5000
1000
1000 d
1000 d
1000 d
1000 d
1000 d
500 d
500 d
1000 d
1000 d
5000
1000 d
1000 d
1000 d
.5000 d
5000

WCOV Montgomery, Ala. KLOK San Jose, Calif.
KOHO Honolulu, Hawai WLBH Mattoon, III. KSTT Davenport, lowa
KVOO Tulsa. OKia. WLEO Ponce, P.R.
KLEO Ponce, P.R. Bash.
1180—254.1
$\begin{array}{ll}\text { WLDS Jacksonville, III. } & \text { I000d } \\ \text { WHAM Rochester, N.Y. } & 50000\end{array}$

1190—252.0

WSNW Seneca Township,

KRDS Tolleson, Ariz.
KEZY Anaheim, Calif.
KNBA Vallejo, Calif. WOWO Ft. Wayne, Ind. WKOX Fram'oham, Mass. WLIB New York, N. Y
WEX Portland, Oreg.
KLIF Dallas, Tex.
1200—249.9
woAl San Anto

KZOO Honolulu, Hawaij

 WCNT Centralia, ill. WKNX Saginaw, Mith,WADE Wadesboro. N.C. WAVI Dayton, Ohio WCAU Philadel
1220—245.8

WEZB Birmingham, Ala. WABF Fairhope, Ala.
KVSA McGehee, Ark. KVSA McGehee, Ark. KLIP Fowlor, Calif. KIBE Palo Alto, Calif. KKAR Pomona, Calif.
KFSC Denver, Cole KFSC Denver. Colo.
WDEE Hamden, Conn W QTY Arlington. Fla. WOSL Kissimmee. Fla. WMET Miami. Fla. WSAF Sarasota, Fla
WCLB Camilla. Ga. WCLE Camilia, Ga. WPLK Rockmart, Ga, WSF WPO LaSalle, lil. WKRS Waukegan, III WSLM Salem, ind. KJAN Atlantic. Iow KOUR independence, lowa KFKN Frank. Kans. WFKN Frankiin, Ky.
KBCL Shreveport. La, KBCL Shreveport. La,
WLBI Denham Springs, La WSME Sanford, Maine WBCH Hastings, Mich, WMDN SAIf Hazlehurst, Miss. WMOC Hazlehurst, MO. KLPW Union, Mo. WKBK Keene, N.H. WGNY Newburgh, N.Y. WSOQ N. Syracuse, N.Y. WREV Reidsvillo. N.C. WENC Whiteville. N.C WGAR Clevin. WGAR CIn wert Ohio KGYN Guymon, Okla. 0d1000
1000 d$10000 d$
500001000 d
1000
$250 d$
$1000 d$
$1000 d$
$250 d$$250 d$
$250 d$250d
W.P.|Ke. Wave Length

KBLY Goldbeach, Oreg. KAPT Salem, Ore. WRIB Providence. R.I. WALD Walterboro. S.C. WFWL Camden, Tenn. WCPH Etowah, Tenn. KVLL Livingston, TEX.
KZEE Weatherford. WLSD Big Stene Gap, Va,
WFAX Falls Church. Va. KASY Auburn, Wash. KOZN Chelan, Wash 1230—243.8

WAUD Auburn. Ala.

 WJBB Haleyville, Ala. WBHP Huntsville, Ala. WTBC Tuscaloosa, Ala. KIFW Sitka, Alaska KSUN Bisbee, Ariz. KRIZ Phoenix. Ariz. KATO Safford, Ariz, KINO Winslow. Ariz. KFPW Ft. Smith, Ark,KBTM Jonesboro, Ark. KGEE Bakersfleld. Calif. KWTC Barstow, Calif KIBS Bishop. Calif.
KXO EJ Centro, Calif. KOAC Ft. Bragg, Calif.
KGFJ Los Angeles, Calif. KGFJ Los Angeles, Calif.
KPRL Paso Robles, Calif. KRDG Redding. Calif. KWG Stockton, Calif KEXO Grand Junction. Colo. KBRR Leadville, Colo.
KOZA Pueblo. Colo.
 WINF Manchester, Conn.
WGGG Gainesville, Fla. WGGG Gainesville, Fla. WONN Lakeland, Fla.
WMAF Madison. Fla. Beh.e
Florida
WNVY Pensacola, Fla
la.WBIA Augusta, Ga.WBLJ Dalton, Ga.WXL! Dublin, Ga.WFOM Marietta, Ga.
WSOK Savannah, Ga.
WAYX Waycross, Ga
ach. Fla.
 000W.P. Ke. Wave LengthW.P.
1000 KALG Alamonord. N.J.100
250

1000d	
lo0d	KYYS Deming, N, Mex.

1000
250
1000 d KFUN Las Vegas, N.Mex. 250d KRSY Roswell. N. Mix. WNIA Cheoktowaga, N. 1000
500
WENY Elmira, N.Y. 1000250d
000dWLFH Hudson. N.1000
1000
WFAS Little Falls,1000
1000
WFAl Fayettevilie, N.C.
WMFR High Point. N.C.1000
1000 d
WNNC Newton, N. C.
WCBT Roanoke Rap., N. C. 1000
1000
wCOL Columbus, Ohis 250
WTOL Toledo, Onio
KADA N. of Ada Okla 1000
1000 d
WBBZ Ponca City, Okla. KVAS Astoria, Ore.
KRNS Burns, Ore. 250
1000
1000
KOOS Coos Bay, Oreg.
KRDR Gresham, Oreg. $\begin{array}{r}1000 \\ 250 \\ \hline\end{array}$
KYJC Medford, Oreg.
KQIK Lakeview. Orels.KTDO Toledo, Ore.
WBYP BeaverWBVP Beaver Falis, Pa.WBVP Beaver Fa
WEEX Easton. P
WKBO HarishrWEEX Easton. Pa.
WKBO Harrisburg, Pa.
WCRO Johnstown.Pa.WCRO Johnstown. Pa,WBPZ Lock Haven, Pa,WTIV Titusville, Pa.WNIK Arecibo, P.R.
WERI WesterlyWERI Westerly, PR. R.WAlM Anderson,WNOK Columbia, S.WOLS Florence, S.C. 1000 d$\begin{array}{ll}\text { KISD Sioux Falls. S. Sak. } \quad 10000 \\ & 1000\end{array}$$\begin{array}{ll}\text { WAKI MeMinnville, Tenn. } & 1000 \\ \text { KSIX Corpus Christi. Tex. } & 1000\end{array}$KSX Corpus Christi. Tex.
KOLK Del Rio. Tex.KNUZ Houston, Tex.KERV Kerrville. Tex.KLVT Levelland, Tex.
KRXK Rexburg, IdahoWJBC Bloomington, HIWQUA Moline, lll.
WSAL Logansport, Ind.
W80W Terre Haute, IndKFJB Marshalltown, lowaWHOP Danville, Ky.WS
$\mathbf{W K}$
$\mathbf{K G}$
$\mathbf{K} Y$
WKLK Cloge MInn 1000
KGHS Internat'l Falls. Minn. 250
KYSM mernall Falls.
KMRS Morrls, Minn.Ky.KLIC Monroe
KSHO New Orleans. La
KSLO 0 pelousas, La.
WQD Calais. Maine
WSJR Madawaska.

WCUM Cumberland, Md. $\quad 1000 \mathrm{~d}$
WMNB No. Adams, Mass.
1000 KWTX Waco. Tex.
1000
KTRF Thief Riv. Flis. Minn. 1000
KWNO Winona, Minn.
WCMA Corinth, Miss.
WHSY Hattiesburg. Miss.
WSSO Starkville, Miss
WAZF Yazoo City, Miss
KOOE Joplin. Mo.
$\begin{array}{ll}\text { KODE } & \text { Oplin, Mo. } \\ \text { KLWT } & \text { Lebanon. Mo. } \\ \text { KNCM } & \text { Moberly, Mo. }\end{array}$
KNCM Moberiy, Mo.

WHITES
 B（G）

Kc．Wave Length W．P．

KFLI Mountain Home，Idaho 250 KWIK Pocatello．Idaho WCRW Chicago，III． WSBC Chicago，III WEBQ Harrisburg． WTAX Springfield， 111. WSDR Sterling，III． WHBU Anderson，ind KDEC Decorah，Jowa KBIZ Ottumwa，lowa KICD Spencer，lowa KIUL Garden City，Kans． WAKE Wichita，Kans WFTM A，aysville，Ky WPKE Pikeville，Ky． WSFC Somerset Ky． KASO Minuen，La． KANE New Iberia，La． WCOU Lewiston，Maine WCEM Cambridge，Md． WJE」 Hagerstown，Md． WHA！Greenfield．Mass． WA I Cadillac．Mich． WBP Cheboygan，Mich． WJPD Ishpeming，Mich WJM Lansine，Mich． WMFG Hibling．Minn． KPRM Fark Rapids：Minn． WJON St．Cloud，Minn． W MPA Aberdeen，Miss． WGCM Gulfowood，Mis MIS Guifuort，Miss FMO Natchez，Miss． WOS Jefferson City，Mo KNEM Joplin，Mo．
NEM Neyada，Mo．
KBYZ Gilings．Mont． KBLL Helena，Mont． KFOR Lincolin，Nebr． KODY North Platte，Nebr． KELK Elko，Nov． WSNJ Bridgeton，N．J． WSLT Ocean City． KAVE Carisbad，N．Mex． KCLV Clovis，N．Mex． WGBB Freeport，N．Y WGVA Genova，N Y WVOM Jamestown，N．Y WNBZ Saranac Lake，N．Y． WSNY Sehenectady．N．Y．Y． WATN Watertown，N．Y． WPNF Brevard，N．C． WCNC Elizabeth City，N．C． WJNC Jacksonvilte，N．C WRAL Raleigh．N．C．
KDLR Devils Lake，N．Dak． WHiZ Zanesvillewn，Ohi KVSO Ardmore，Okla KBEK EIk City Okia KBEL Jdabel．Okla． KOKL Okmulgee，Okla． KFLY Corvallis，Oreg． KTIX Pendleton，Oreg． KQEN Redmond Ore WRTA Altoona，Pa WHUM keading，Pa WKOK Sunbury，Pa． WBAX Wilkes－Barre，Pa． WALO Humacao，P．R． WKDK Newberry，S． WDXY Sumter，S．C WBEJ Elizabethton．Tenn． WEKR Fayettevilie，Ten WBIR K noxville，Tenn． WENK Union City，Tenn KVLF Ajpine，Iex． KEAN Brownwood，Tex． KORA Bryan，Tex． KSOX Raymondville，Tex．
KCKG Sonora，Iex． KXOX Sonora，lex． KXOX Sweetwater，Tex． WSKI Montpelier，V t WROV Petersturg，Va WROV Roanoke，Va． WTON Staunton，Va，

Kc．Wave Length W．P．
KXLE Ellensburgh，Wash． KGY Olympia，Wash． WTIP Charleston，W．Va． WDNE EIkins，W．Va． WIBU Poynette，Wis WOBT Rhinelander，Wis．
WJMC Rice Lake，Wis． WJMC Rice Lake，W is
KFBC Cheyenne，W yo． KEVA Evanston，wyo． KASL Newcastle．Wyo． KRAL Rawlins，Wyo KTHE Thermopolis，wyo

1250－239．9

WZOB Ft．Payne，Ala． KAKA Wickenburg，Ariz．
KFAY Fayetteville，Ark．
KALU Litle hock，Ark． KALU Little Rock，A
KHOT Madera，Galif． KTMS Santa Barbara，Calif
KDHi Twenty．Nine Palms Palms， KMSL Ukiah，Calif． KICM Golden，Colo． WNER Live Oak，fla
WRIM Pahokee，Fla． WDAE Tampa，Fla WYTH Madison，Ga
WIZZ Streator，ill WGL Ft．Wayne，Ind WRAY Princeton，Ind．
KCFI Cedar Falls，lowa KFKU Lawrence，Kans． WREN Topeka，Kans．
WNVL Nicholasville，Ky WLCK Scottsvilie，Ky． WGUY Bangor，Maine WARE Ware，Mass．
WWBC Bay Ciiy， WWBC Bay City，Mich．
KOTE Fergus Falls，Minn． KCUE Red Wing，Minn．
WHNY McComb．Miss． WHNY McComb．M
KBTC Houston，Mo． KBTC Houston，Mo．
WKBR Manchester， WKBR Manchester，N．H
WMTR Morristown，N． WMPS Morristown，N．J． WFAG Farmville，N．C
WKDX Hamlet，N．C． WKDX Mamlet，N．
WBRM Marion，N．C House urt House，Ohi WLEM Emporium，Pa
WPEL Montrose， WPEL Montrose，
WRYT Pittsburgh， WNOW York．Pa． WTMA Charleston．S．C． WKBL Covington， 1 enn WNTT Tazewell，Tenn． KFTV Paris，Tex．
KPAC Port Arthur，Tex． KTFO Seminole．To，Tex． KANN Oqden，Utah KVEN Vaden，Utah WDVA Danvill WYSA Danville，Va． WEER Warrenton，Va． KWSC PulJman，Wash KTW Seattle，Wash． WEMP Milwaukee，WI

1260—238．0

WCRT Birmingham，Ala． KCCB Corning Ark KBHC Nashvilje，Ark． $1000 d$ KGiL San Fernando，Calif． KSNO Aspen，Colo WMMM Westport，Conn． WNRK Newark，Del． WWDC Washington，D．C．
WFTW Fort Walton Beach， Beach． Florida 1000 d

WAME Miaml，Fla． WWPF Palatka，Fla．

 WWPF Palatka，FlaWHAB Baxley，Ga． WBBK Blakely，Ga． WTJH East Point，Ga． KTEE Idaho Falis，Ida KWE：Weiser，Ida．
WIBV Bellevilio．II． WFBM Indianapolis．In KFGQ Boone，Jowa 1000 KWHK Hutchinson Kans 1000 WXOK Baton Rouge，La． 000 WEZE Boston，Mass． WALM Albion，Mieh WJBL Holland．Mich． KROX Crookston，Minn． KDUZ Hutchinson，Minin WGVM Greenville，Mis
WNSL Laurel，Miss． 1000 KGSX Laurel，Miss．

$$
\begin{array}{r}
1000 \\
1000 \\
1000 \\
1000 \\
1000 \\
1000 \mathrm{~d} \\
1000 \mathrm{~d} \\
1000 \\
1000 \\
1000 \\
1000 \\
250 \\
1000 \\
1000
\end{array}
$$

5000 d 1000 d
500 d
500 d5
5000 d 5000 d
1000 d
500 d
1000 d
5000 d10000
0000 d
1000d
5000 d
5000 d$5000 d$
$1000 d$
5000d
1000 d
10001000
5000 d
1000
000 d$5000 d$5000 d

Kc．Wave Length KIMB Kimball，Nebr，
WBUD Trenton，N．J．
KVSF Santa Fe，NM \quad ， 5000
0000
000
000
000
 IPC Lengrh W．P． $1000 d$
$500 d$
$5000 d$
$1000 d$
5000
$1000 d$
1000
$1000 d$
$500 d$
5000
$5000 d$
5000
1000
$1000 d$
$500 d$
$1000 d$
$5000 d$
$5000 d$
5000
$5000 d$
1000
$5000 d$
1000
$1000 d$
$1000 d$
5000
$1000 d$
5000
1000
5000
5000
$5000 d$
$1000 d$
$1000 d$
$1000 d$
$500 d$
$1000 d$
$1000 d$
500
$500 d$
5000
$500 d$
$1000 d$
$1000 d$
$5000 d$
5000
$1000 d$
5000

1290－232．4

WTHG Jackson，Ala．	1000 d
WSHF Sheffeld，Ala．	1000 d
WHLS Sylacauga，Ala．	1000 d
KEOS Flagstaff，Ariz．	1000
KCUB Tucson，Ariz．	1000
KDMS EIDorato，Ark．	$5000 d$
KUOA Siloam Sprgs．，Ark．	5000 d
KHSL Chico，Calif．	5000
KPER GIlroy，Calif．	5000 d

「ス cara，Cal． 500 d
WTUX Wilmington，Del． 1000 d
WSCM Panama City Beach，
FIRK Florida 500 d
5000
WIRK W．Palm Bch．，Fla．
WDEC Americus，Ga． 5000
600 d
WGHK Canton，Ga．
WTOC Savannah KSNN Pocatello，Ga． 5000
000 dWIRL Peoria．IJ．
KWNS Pratt．KansasWCBL Pratt．Kansas
WCBL Benton，Ky． KUEF Jennings，La．5000d
WHGR 1000d
1000 d
5000 KCJH Arroyort，Ark．

Calif．

	10
fif．	

1300-230.6
 WBSA Boaz. Ala.

WTLS Tallassoe, Ala.
WEZQ Winfleld, Ala.
KWCB Searcy, Ark.
KROP Brawley, Calif. KYNO Fresno. Calif. KWKW Pasadena, Calif.
KVOR Colo, Spros. Colo. KVOR Colo. Spros., Colo.
WAVZ New Haven, Conn. WAVZ New Haven, Conn.
WRKT Cocoa Beach. Fla. WFFG Marathon. Fia. WSOL Tampa, Fla. WMTM Moultrie, Ga,
WNEA Newman. Ga, WNEA Newman, Ga
WIMO Winder, Ga, KOZE Lewiston, Idaho WFRX W. Frankfort, I WHLT Huntington. Ind. WAAC Terre Haute, Ind.
KGLO Mason City. Iowa KGLO Mason City. I WIBR Baton Rouge, L KANB Shreveport, La,
WFBR Baltimore, Md, WFBR Balitimore, Md
WJDA Quincy, Mass. WOOD Grand Rapids. Mich. WRBC Jackson, Miss.
KMMO MarshalJ, Mo. KBRL McCook, Nebr. KPTL Carson City, Nev. WAAT Trenton, N.J.
 WEEE Rensselaer, N. Y. WGOL Goldsboro, N.C. WLNC Laurinburg, N.C WSYRE Cleveland. Ohio WBVO Mt. Vernon, Ohio KOME Tuisa, Okla. KDOV Medford, Oreg. KACI The Dalles, Or
WWCH Clarion, Pa. WTHT Hazleton, Pa. WTIL Mayaquez. P.R WCKI Greer, S.C. WKSC Kershaw, S.C. KOLY Mobridge, S.Dak WMTN Morristown, Tenn. WMTN Morristown, Tenn. KVET Austin. Tox. GGNS Laredo. Tex KGNS Laredo, Tex. KSTU Logan, Utah KOL Seattle, Wash. WCLG Morgantown. W.Ya.
1310-228.9
WHEP Foley, Ala,
WJAM Marion, Ala.
KBUZ Mesa, Ariz.
KBOK Malvern, Ark.
KIOT Barstow, Calif KIOT Barstow, Calif.
KPOD Crescent City, Calif. KDIA Oakland, Calif.
KTKR Taft, Calif.
KTKR Taft, Calif.
KFKKA Greeley. Colo.
WICH Norwieh, Conn.
wood Deland, Fla.
WOOO Deland, Fla.
WAUC Wauchula. Fla
WOMN Decatur, Ga.
WBRO Waynesboro, Ga.
WBMK West Point, Ga.
KLIX Twin Falls. Idaho KLIX Iwin ralis. Idaho KDLS Perry. Iowa KOLX Seott City, Kans. WTTL Madisonvilie, Ky. WDOC Prestonsburg, KY. KIKS Sulphur, La. WLOB Portland. Maine WORC Worcester, Mass. WORC Worcester, Mass. 5000 WCCW Traverse City. Mich. 5000 d KRBISt, Peter, Minn. 1000 d NXXX Hattiesburg, Miss. 1000 d KFSB Joplin, Mo.
KFBB Great' F alls. Mont. WJLK Asbury Park N. WCAM Camden, N. J. AAM Camden, N. N 1000 WVIP Ab Kisco, N. Y. M. lo00d WTLB Utica. N.Y. $\quad 1000$ WISE Asheville. N.C. WTIK Durham N.C.
KNOX Grand Forks. N Dak 5000
WFAH Arand Forks. N.Dak. 5000
1000 d
1000 d
500 d
1000 d
1000 d
1000
5000
000
000
5000
5000
500
5000 d
5000 d
5000 d
5000 d
500
5000 d
500
000 d
5000
5000
1
5000
1000 d
500 d
500 d
500 d
500 d
500 d
5000
$\begin{array}{r}500 d \\ 5000 \\ \hline\end{array}$
5000
5000
1000 d
1000 d
5000 d
5000 d
5000
5000
5000 d
1000 d
5000 d
5000 d
1000 d
ज领
5000
500
5000
5000
5000 d
5000 d
1000 d
1000 d
500 d
500 d
1000 d
1000 d
1000
500 d
1000d
000d
500 d
500 d
500 d
500 d
1000 d
5000 d
5000
5000
1000
1000 d
5000
1000

```
            W.P
```

 Kc. Wave Length
 KNPT Newport. Oreg.
 WBFD Bedford, Pa.
 WGSA Ephrata, Pa.
WNAE Warren, Pa.
WNAE Warren, Pa.
WDXI Jackson. Tenn.
WBNT Oneida, Tenn.
KZIP Amarillo. Tex.
KZIP Amarillo. Tex.
00 WRR Dallas. Tex.
d WHOK Lancaster, Ohio
KWOE Clinton, Okla.
KATR Eugens, Ore.
WKAP Allento Ore.
WKAP Allentown, $P a$.
WGET Gettysburg, Pa
WJAS Pittsburgh, Pa

WSCR Scranton, Pa.
WUNO Rio Piedras, P.R.
KXLW Seottsbluff, Nebr.
KOLT S Roswell. N. M.
KRDD
WWH Hornelt. N. Y.
KUBO San Antonio, Tex.
WUBO San Antonio,
WEEL Fairfax, Va,
WGH Newport News. Va.
KARY Prosser. Wash.
WIBA Madison. Wis.
1320-227.1
WAGF Dothan, Ala.
WAGF Dothan, Ala.
WENN Birmingham, Ala.
KBLU Yuma, Ariz.
KBLU Yuma, Ariz.
Kc. Wave Length
1000
5000

5000

500

5000
5000
1000 d
1000
1000 d
1000
1000 d
500 d
500 wd
5000
500
5000
5000
5000
1000 d
500 d
500 d
500 d
1000 d
5000
1000 d
5000
1000 d
1000 d
5000 d
5000 d
5000 d
1000 d
5000
5000

\mathbf{W}
\mathbf{K}
\mathbf{W}
\mathbf{W}
\mathbf{K}
\mathbf{K}
\mathbf{K}
\mathbf{K}
\mathbf{W}
\mathbf{W}
\mathbf{W}
\mathbf{W}
\mathbf{W}
\mathbf{W}
\mathbf{W}
vJMB Brookhaven. Miss. WAML Laurel, Miss
KXEO Mexico. Mo.
KLID Poplar Bluff, KSGM St, Genevieve. Mo. KSMO Salem, Mo.
KICK Springfleld. KICK Springfield, M
KCAP Helena, Mont. KCAP Helena, Mont.
KPRK Livingston. Mont KCAPK Livingston, Mont.
KATL Miles Clty, Mont,
KQTE Missoula. Mont.
KHUB Fremont, Netir. KHUB Fremont, Netir.
KGFW Kearney, Nebr. KSID Sidney. Nebr
KORK Las Vegas,
KBET Reno, Nov. KBET Reno, Nev.
WDCR Hanover, N.H WMID Atlantie City, N.J.${ }_{250}^{250}$1000 d
1000
10001000
10001000
2501000
250
500
1000
1000
10001000
1000
1000
$\begin{array}{lr}\text { KRRR Ruidoso. N. Mex. } & 1000 \\ \text { KKIT Taos, N.Mex. } & 250 \\ \text { KSIL Silver City. N. Mex. } & 1000\end{array}$
$\begin{array}{lr} & 100 \\ \text { SIL Silver City. N. Mex. } & 1000 \\ \text { VMBO Auburn. N.Y. } & 1000 \\ \text { VENT Gloversville. N.Y. } & 1000\end{array}$
1000
1000
250
$\begin{array}{lll}\text { WENT Gloversvilie. N.Y. } & 1000 \\ \text { WKSN Jamestown. } \mathbf{H} . \mathrm{Y} \text {. } & 250 \\ \text { WUSJ Lockport. N, Y. } & 250\end{array}$
250
1000
WMSA Massena, N, Y,
WMSA Massena, N.Y.
WALL Middletown, N.Y,
WIRY Plattsburth. IN.Y.
$\begin{array}{ll}\text { WHBL Sheboygan. Wis. } & 5000 \\ \text { KOVE Lander, Wyo. } & 5000\end{array}$
WJRI Lenoir, N.C.
WTSB Lumberton.
WOXF 0xford. N.C
W.Va
N.C.
1000
1000
5000d
$5000 d$
$5000 d$
$5000 d$
WPOW New York, N. Y
5000 WH OT Camplock, N.C.
WHOT Campbell. Ohio
WHOT Campbeli. Ohio
5000
WKN KOV Wellston, Ohio
WELW Willoughby,

1000 d	WELW Willoughby, 0.
5000	KPOJ Portland, Oreg.
1000 d	WBLF Bellefonte, Pa.

WAEW Grossvile. Tenn.
WTRO Dyersburg. Tenn.
KMIL Cameron. Tex.
KSWA Graham. Tex.
KINE Kingsvilie. Tex.
KVKM Monahans, Tex.
KDOK Tyler. Tex.
WBTM Danville. Va.
WRAA Luray, Va.
WOLD Marion, Va.
WESR Tasley, Va.
KFKF Bellevue, Wash.
KCFA Spokane, Wash.
WETZ New Martinsville,
WHBL Sheboygan. Wis.
KOVE Lander, Wyo.
5000$\begin{array}{r}500 \\ \hline 1000 \\ \hline\end{array}$
WTSB Lumberton. N
WOXF Oxford. N.C.
W00w Greenville.
KiBH Seward, Ala
KiKO Miami. Ariz.

WOOW Greenvilie, N.C. 1000
웅웅
mith, Ark.

1340—223.7
1340—223.7

WKUL Cullman, Ala.

WJOI F lorenee, Ala.

WGWC Selma, Ala.

WFEB Sylacauga, Ala.

WFEB Sylacauga, Ala.
KiBH Seward, Alaska
KiKO Miami. Ariz.
KKIT Taos, N,M.
KNOG Nogalos, Ariz.
KPGE Page, Ariz.
KPGE Page, Ariz.
KENT Prescott, Ariz.
KBTA Batesvilie, Ark.
KBTA Batesville, Ark.
KAAB Hot Springs. Ark.
KBRS Springdale. Ark.
KAAB Hot Springs. Ar
KBRS Springdale. Ark
KBRS Springdale, A
KATA Areata, Calif.
KMAK Fresno, Calif
KMAK Fresno, Calif
KMAK Fresno, Calif
KDOL Mojave, Calif.
KDOL Mojave, Calif.
KOL
KSFE Needles. Calif,
KAOR Oroville. Calif,
KSFE Needles. Calif,
KAOR Oroville. Calif,
KATY San Luis Obispo,
$\begin{array}{lr}\text { Calif, } & 100 \\ \text { Calif. } & 250 \\ \text { Calif. } & 250 \\ \text { Obispo, } & \\ \text { Californla } & 1000 \\ \text { ara, Calif. } & 1000\end{array}$

| KIST Santa Barbara, Calif. | 1000 |
| :--- | :--- | :--- |

KOMY Watsonville, Calif.
KDEN Denver. Colo.
KWSL Grand Junetion, Colo.
250
200
250
000
250
250
000
250
000
500
1000
250
1000
100
250
250
000
0
Wo
Wi
W
KWSL Grand Junetion
KVRH Salida, Colo.
KVRH Salida, Colo,
WNHC New Haven, Conn.
WOOK Washington
WNHC Now Haven, Conn.
WOOK Washington, D. C.
wOOK Washington, D
WSLC Clermont, Fia,
WTAN Clearwater, Fla.
WROD Daytona Beh Fia
$\begin{array}{ll}0 & W \\ 0 & W \\ W\end{array}$

0	W
d	W
d	

w
w
w

 \(W\)
 W
WKELO Sloux Falls. S. Sak
WKIN Kingsport, Tenn.
WMSR Manehester, Tenn.
KRLW Walnut Ridge,
KHSJ Hemet, Calif,$1320-227.1$

 1000
 KHSJ Hemet. Calif,
K KUDE Oceanside, Calif. 1000
1000 d
5000WKAVI Rocky Ford, Colo.
WATR Walif.
-
WGMA Hollywood, Fla.
WZOK Jacksonvillo, Fla.
WZOK Jacksonville, F
WAMR Venice, Fla.
WHIE Griffin, Ga.
WHIE Griffin, Ga.
WKAN Kankakee, 11
WKAN Kankakee, lll.
KNAA Knoxville, lowa
KMAQ Maquoketa, lowa
KNAA Knoxville, lowa
KMAQ Maquoketa, Jowa
KLWN Lawrence. Kans.
WBRT Bardstown, Ky.
WBRT Bardstown, Ky
WNGO Mayfeld, Ky.
WNGO Mayfield, Ky
KHAL Homer, La.
KHAL Homer, La.
WiCO Salisbury, Md
WiCO Salisbury, Md.
WARA Attleboro. Mass.
WILS Lansing. Mich.
WILS Lansing. Mich.
WDMJ Marquette, Mieh
WDM Marquette, Mieh.
WRJW Picayune, Miss.
KXLW Clayton. Mo.
II.
500
5000

KRDD Roswell. N.M.
WWHG Hornelt. N.Y
WQSR Solvay, N.Y.
Nebr
$\mathrm{N}_{\mathrm{M}}, \mathrm{Y}$.
WAGY Solvay, N.Y.
Worest City, N.C.
5
co00d
WAGY Forest City, N.C.
5000
5000
WCOG Greenshoro, N.C.
WKRK Murphy, N.C.
5000
5000 d
WKRK Murphy, N.C.
5000
5000 d
500 d
Ala.
Ala.
Ala.
Aka
Ark.
Ariz.
Alif.
Lif.
Obispo,
W NCO Ashland, O.
WOUB Athens, Ohio
WIZE Spring
WIZE Springfield. Ohio
WSTV Steubenvilie, Ohio
WSTV Steubenvilie,
KIHN Hupo, Okla.
KOCY Okla City.
KIHN Hugo, Okla.
KOCY Okla. City, Cikla.
KTOW Sand Sprines Okla
KTOW Sand Sprines, Okla.
KLOO Corvallis, Oreg.
KWVR Enterprise, Oreg.
KLOO Corvallis, Oreg.
KWVR Enterprise, Oreg.
KJHR Hood River, Oreg.
KWVR Enterprise, Oreg.
KIHR Hood River, Oreg.
KFIR North Bend, Oreg.
KHR Hood River, Oreg.
KFIR North Bend, Oreg.
WCVI Connellsville, Pa.
WSAJ Grove City Pa.
WKRZ Oi
WCVI Connellsville, Pa
WSAJ Grove City. Pa.
WKRZ 0ll City, Pa.
WKRZ Oll City, Pa,
WHAT Philadelphia, Pa.
WRAW Reading, Ps.
WRAW Reading, Pa,
WRAW Reading, P (
WTRN Tyrone. Pa.
WTRN Tyrone. Pa.
WBRE Wilkes.Barra, Pa.
250
1000

WHITEES
 L（0）

Kc．Wave Length W．P．
WRPB Warner Robins，Ga．5000d KRLC Lewiston，Ida， Clarkston，Wash． 5000 d WAAP Peoria． 11. WJBD Salem，III． WIOU Kokomo，Ind． KRNI Des Moines，lowa KMAN Manhatian，Kans． WLOU Louisville，Ky． WSMB New Orleans，L WHM1 Howell．Mich． KDIO Ortonville，Minn． WCMP Pine City．Minn． WKOZ Kosciusko．Miss． KCHR Charleston，Mo， KBRX D＇Neill，Nebr． WLNH Latonia，N．H． WHWH Prineeton，N．J KABQ Albuquerque，N．M． WCBA Corning，N．Y WRNY Rome．N．Y． WBMT Black Mountain，N．C． WHIP Mooresville．N．C． WLLY Wilson，N．C． KBMR Bismarck，N．
WADC Akron．Ohio WADC Akron．Ohio
WCSM Celina，Ohio WCSM Celina，Ohio KRHO Ouncan，Okla． KTLQ Tahlequah．Okla．
KRVC Ashland，Oreg． KRVC Ashland，
WORK York，Pa， WORK York，Pa，
WW WR Windber， WOAR Darlington，S．C WGSW Greenwood．S．C WRKM Carthage，Tenn
KCAR Clarksville，Tex． KCAR Clarksilie， KTXJ Jasper．Tex． WBLT Bedford．Va． WFLS Fredericksburg．Va． WNVA Norton，Va． WAVY Portsmouth，Va． WPDR Portage，Wis

1360－220．4

www B Jasper，Ala． WMFC Monroeville，Ala． WELR Roanoke，Ala． KRUX Glendale，Ariz． KFFA Helena，Ark． KFIV Modesto，Calif． rest，Calif． KOEY Boulder．colo． WDRC Hartford，Conn． WOBS Jacksonville．Fla． WSFR Sanford．Fla． WINT Winter Haven，F WLAW WMAC Metter．Ga． WLBK Dome．Gaib，ij． WVMC Mt．Carmel，III． WGFA Watseka，III KHAK Cedar Rabids．lowa KXGI Ft．Madison，lowa KBTO EI Dorado．Kans． WFLW Monticello，Ky． KDBC Mansfield，La KVIM New Iberia，La． KTLO Tallulah．La． EB Balimore，M WKYO Caro，Mass． WKMI Kalamazoo，Mich．
KLRS Mountain Grove，Mo． KWRV MeCook．Nebr WW BZ vineland． WKOP Binghamton，N．Y． WMNS Olean．N．Y． WCHL Chanei Hilli，N．C． KEYZ Wiliston．N．D． WSAI Cincinnati，Ohio KUIK Hillsboro，Oreg． WPPA Potsvill Pa WELP Easley．S．C． WLCM Lancaster．S．C． KRAY Amarillo．Tent KACT Andrews．Tex．1000d1000 d
5000 d5000 d1000d1000 d5000 d5000
50005000
1000 d500 d500 d
1000 d
1000 d
5000
5000500 d
1000 d
2501000 d
1000 d
50005000
1000 d1000 d
1000 d
1000 d
1000 d
5000 d
5000 d
1000 d 5000 d
1000 d
1000 d
5000
500 d
100010001000 d
5000

500 d5000
5000 d
1000 d
1000 d
$500 d$
$1000 d$
1000 d
1040 d
1000 d
5000
500 d500 d
1000 d1000 d
1000 d500 d
5000 d
1000 d
500 d
50005000
1000 d
1000 d
1000 d1000
10001000
5000
$1000 d$
1000 d
1000 d
5000
50005000
50005000
500 d
000d
50005000
1000 d
1000 d
1000 d
1000 d500 d
000 d

Ke．Wove Length KWBA Baytown．Tex．
KRYS Corpus Christi，Tex． KRYS Corpus Christi，Tex． KXOL Ft．Worth，T
WBOB Galax，Va． WHBG Harrisonburg，Va． KFOR Grand Couleo，Wash． KMO Tacoma，Wash． WHJC Matawan，W．Va．
WMOV Ravenswood，W．V． WBAY Green Bay，Wis． WISV Vironqua，Wis． WMNE Menomonie．Wis．
KVRS Rock Springs，Wyo．

$1370-218.8$

WBYE Calera，Ala． KREL Corona．Cal．

 K QCY Quincy，Calif． KEEN San Jose，Cailf． KGEN Tulare，Calif．5000 WHWE MartInsville，Va．1000d

 WMOD Mound sville, w. Va.
 WKMK Blountstown, Fla.
KKOS Oeala, Fla.
WCOA Pelsacola, fla.
WAXE Vero Beach, Fla.
WBGR Jesup, Ga.
WFDR Wanchester, Ga.
WPRC Lineoln.
WTIS 8loomirigioli
WLTH Gary. Ind.
KOTH Dubuque, Jowa
KGNO Dodge City.
KALN lola, Kans.
WABD Ft. Campbell, Ky.
WGOH Grayson. Ky.
KAPB Marksville. La, Ky.
WMHI Braddocks His. M
WWHI Braddocks His., Md
WKIK Leonardtown. M
WOEA Ellsworth, Me.
WGHN Grand Haven, Mich.
KSUM Fairmont, Minn.
WMGO Canton, Miss.
WMGO Canton, Miss.
KWRT Boonville, Mo
KCRV Caruthersville
KXLF Butte. Mont.
KAWL York. Nebr.
WFEA Manchester, N.H.
WALK Patchogue, N.Y.
WSAY Rochester, N.Y.
WSAY Rochester, N. Y.
WLTC Gastonia, N.C.
KFJM Grand Forks.
WSPD Toledo. Ohio
KVYL Holdenville, Okla.
KAST Astoria, Oreg.
WOTR Corry, Pa.
WPAZ Pottstown, Pa
WKMC Roaring Spras., Pa.
WKMV Vieques, P.R.
WKFD Wickford, R.I,
WOEF Ghattanooga, Tenn.
WDEF Chattanooga, Tenn.
WOXE Lawrenceburg. Tenn.
WRGS Rogersville, Te
KOKE Austin. Tex.
KFRO Lonoview. Tex
KFRO Longview. Tex
KPOS Post Tex
KPOS Post, Tox.
KSOP Salt Lake City, Utah
WBTN Bennington, V t.
WJWS South Hill. Va.
WMOD Moundsville, w.V:
WCCN Neillsville, Wis.
KVWO Cheyenne, Wyo.
1380-217.3
WRAB Arab, Ala.
WGYV Greenville, Ala.
WGYV Greenville, Ala.
KOXE N. Little Rock. Ar
KOXE N. Little Rock, Ark.
KBVM Lancaster, Calif.
KGMS Sacramento, Calif.
KSBW Salinas, Calif.
KFLJ Watsenburg. Colo
WAMS Wilmington
WAMS Wilmington, DeI.
WLIZ Lake Worth. Fla.
WQXQ Ormond Bch., Fia,
WLCY St. Petersburg. Fla.
WAOK Atlanta, Ga.
WSIZ Ocilla, Ga.
KPO! Honolulu, Hawaid
WGZI Brazil, ind.
WKJG Ft. Wayne, tud.
KCIM Carroll. lowa
KCII Washington. Iowa
KUDL Fairway, K
KUOL Fairway, Kan
WMTA Central City, Ky.
WWKY Winchester, Ky.
WYNK Baton Rouge, La.
WKTJ Farmington, Me.
WTTH Port Huron, Mich.
WPLB Greenvile, Mieh.
WPLB Greenville, Mieh.
KLIZ Brainerd, Minn.
KAGE Winona, Minn.
WDLT Indianola. Miss.
KWK St. Lonis, Mo.
KUVR Holdredge. Nebr.
WBBX Portsmouth, N.H.
N.C.

1000	WB NX New York. N.Y.
1000	WLOS Asheville. N.C.
5000	WTOB Winston-Salem, N.C.

1000	WBNX New York, N.Y.	5000	KUKI Ukiah, Calif.
1000	WLOS Asheville. N.C.	5000	KUNG Visalia, Galif.

$\begin{aligned} & 5000 \\ & 1000 \mathrm{~d} \text { WTOB Winston-Salem, N.C. } \\ & \text { WWIZ Lorain, Ohio }\end{aligned}$
祸
WWKO Lorain, Ohio
KSWO Lawerly, Ohio
KW, Okla.
5000
5000
5000
${ }^{10200}$
00d KKMUS Muskone Okla．1000d KOTA Oelta，Colo．1000 KBZZ La Junta，Colo．
1000 d
1000 KBCH Ocean Lake, Orem.
$\mathbf{1 0 0}$
KSRV Ontario, Oreg,
WACB Kittanning,
WMLP Milton. Pa.
WAYZ Waynesboro,
WAYZ Waynesboro, Pa.
WNRI Woonsocket. R.I.
WARI Woonsocket. R.I.
WAGS Bishopville, S.C.
WGUS N. Augusta. S.C.
KOTA Rapid City, S.Dak.
KFCB Redfield, S. Dak.
WYSH Clinton, Tenn.
WGMM Millington. Tenn.
KJET Beaumont, Tex.
KBWD Brownwood, Tex.
KCRM Crane, Tex.

5000	KUKI Ukiah, Calif.	10
5000	KUN\& Viahilia, Calif.	10
5000	KRLN Canon City. Colo.	2
5000	KOTA Oelta, Colo.	25
1000 d	KFTM Ft. Moroan. Colo.	250
1000	KBZZ La unta, Colo.	10
1000	WSTC Stamford, Conn.	10
1000 d	WILJ Willimantic, Conn.	10
5000	WFTL Ft. Lauderdale, Fia.	2
1000 d	WIRA Ft. Pierce, Fla.	10
1000 d	WNVE Ft. Walton Bch., Fla.	
1000 d		

5000	KUKI Ukiah, Calif.	10
5000	KUN\& Viahilia, Calif.	10
5000	KRLN Canon City. Colo.	2
5000	KOTA Oelta, Colo.	25
1000 d	KFTM Ft. Moroan. Colo.	250
1000	KBZZ La unta, Colo.	10
1000	WSTC Stamford, Conn.	10
1000 d	WILJ Willimantic, Conn.	10
5000	WFTL Ft. Lauderdale, Fia.	2
1000 d	WIRA Ft. Pierce, Fla.	10
1000 d	WNVE Ft. Walton Bch., Fla.	
1000 d		

5000	KUKI Ukiah, Calif.	10
5000	KUN\& Viahilia, Calif.	10
5000	KRLN Canon City. Colo.	2
5000	KOTA Oelta, Colo.	25
1000 d	KFTM Ft. Moroan. Colo.	250
1000	KBZZ La unta, Colo.	10
1000	WSTC Stamford, Conn.	10
1000 d	WILJ Willimantic, Conn.	10
5000	WFTL Ft. Lauderdale, Fia.	2
1000 d	WIRA Ft. Pierce, Fla.	10
1000 d	WNVE Ft. Walton Bch., Fla.	
1000 d		

5000	KUK! Ukiah, Calif.	10
5000	KUNG Visalia, Galif.	10
5000	KRLN Canon City. Colo.	25
5000	KOTA Oelta, Colo.	25
1000 d	KFTM Ft. Moroan. Colo.	250
1000	KBZZ La Junta, Colo.	10
1000	WSTC Stamford, Conn.	10
1000 d	WILJ Willimantic, Conn.	10
5000	WFTL Ft. Lauderdale, Fia.	2
1000 d	WIRA Ft. Pierce, Fla.	10
1000 d	WNVE Ft. Walton Bch., Fla.	
1000 d		

 WARI Woonsocket. R.I.
 WAGS Bishopville, S.C.
WGUS N. Augusta. S.C.
KOTA Rapid City, S.Dak.
KFCB Redfield, S. Dak.
WYSH Clinton, Tenn.
WGMM Millington. Tenn.
KJET Beaumont, Tex.
KBWD Brownwood, Tex.
KCRM Crane, Tex.
1000
WARI Woonsocket. R.I.
WAGS Bishopville, S.C.
WGUS N. Augusta. S.C.
KOTA Rapid City, S.Dak.
KFCB Redfield, S. Dak.
WYSH Clinton, Tenn.
WGMM Millington. Tenn.
KJET Beaumont, Tex.
KBWD Brownwood, Tex.
KCRM Crane, Tex.
WARI Woonsocket. R.I.
WAGS Bishopville, S.C.
WGUS N. Augusta. S.C.
KOTA Rapid City, S.Dak.
KFCB Redfield, S. Dak.
WYSH Clinton, Tenn.
WGMM Millington. Tenn.
KJET Beaumont, Tex.
KBWD Brownwood, Tex.
KCRM Crane, Tex.
5000
$1000 d$
$1000 d$
$500 d$
d
KTSM El Paso Tex.
KTSM El Paso, Tex.

5000 d	KTSM El Paso, Tex.
5000	KMUL Muleshoe, Tex.
KBOP Pleasanton, Tex.	

 0000 KBOP Pleasanton, Tex.
 5000 WSYB Rutland. Vt.
 5000
 1000 d
1000 W WRG Richmond, Va.
KRO Everett, Wash.

5000	WMBG Richmond, Va.
1000 d	KRKO Everett, Wash.
1000 d	KPEG Spokane, Wasn.
1000 d	WMTD Hinton, W.Va.

$1000 d$	KRKD Everett, Wash.
$1000 d$	
$1000 d$	KPEG Spokane, Wasn.
WMTD Hinton, W.Va.	

 WMTD Hinton, W.Va.
 WBEL Beloit, wis.

000 d	KPEG Spokane, Wasn.
S000	WMTD Hinton, WW.V.V.
000 H	HEL Beloit, Wls.
5000	$1390-215.7$

 . 1000
 W.P.
 Ke. Wave Length

Kc. Wave Length

1000	W
1000	W
5000	W
$1000 d$	W
5000 d	W
1000 d	K
5000	K
1000 d	K
1000 d	K
5000	W
1000	W
1000 W	\mathbf{W}

$\begin{array}{llr}\text { WNVE Ft. Walton Bch., Fla. } \\ & & 1000 \mathrm{~d} \\ \text { WRHC Jacksonville, Fla. } & 250 \\ \text { WPRY Perry, Fla. } & 1000 \\ \text { WTRR Sanford, Fla. } & 1000\end{array}$
$\begin{array}{llr}\text { WNVE Ft. Walton Bch., Fla. } \\ & & 1000 d \\ \text { WRHC Jacksonville, Fla. } & 250 \\ \text { WPRY Perry, Fla. } & 1000 \\ \text { WTRR Sanford, Fla. } & 1000\end{array}$
000
250
250
$1000 d$
1000
1000
1000 d
1000 d
000d
1000 d
1000 d WPRY Perry, Fla.
WTRR Sanford, Fla.

$1000 d$	WTRR Sanford, Fia.
5000	WZRH Zephyr Hills, Fla.
500 d	WCQS Alma, Ga.

500 d	WCQS Aima, Ga.
1000 d	WSGC Elberton, Ga

 1000 d
 500 d
WSGC Elberton, Ga.
500d WNEX Macon, Ga.
500 d
1000
WMEX Macon, Ga.
W MA Moultrie, Ga.

1000	WMGA Moultrie, Ga.
1000	WCDH Nownan

 1000 WCDH Nownan, Ga.
 \begin{tabular}{r|l}
 1000 \& WCDH Newnan, Ga.

$1000 d$ \& WGSA Savannah. Ga.

5000 \& KART Jerome. Idaho
\end{tabular}

$1000 d$	WGSA Savannah. Ga.
5000	KART Jerome, Idaho
$1000 d$	KRPL Moscow. Idaho

 1000 d
 1000 d
1000
1000
500
敬高
000d KSPT Sandpoint, Idaho
5000 W

Kc. WaveLength W.P.|Kc. WaveLength W.P.|Kc. Wave Length W.P.|Kc. Wave Length W.P.

KBYG Big Springs, Tex. 1000 KUNO Corpus Christi, Tex. KJLE nr. Galveston, Tox KEBE Jacksonville, Tex. KIUN Pecos, Tex.
KEYE Perryton, Tex.
KVOP Plainview, Tex. KDWT Stamford, Tex. KTFS Texarkana, Tex KVOU Uvalde. Tex KJXX Provo. Utah WDOT Burlington. Vt. WHHV Hillsville, Va. WHIH Portsmouth, Va WHLF So. Boston, Va KEDO Longview, Wash. KRSC Otheilo. Wash. KTNT Tacoma, Wash WBOY Clarkesburg, W.Va. WRON Ronceverte, W.Va. WSPZ Spencer, W.Va. WKWK Wheeling. W. Va WBTH Williamson, W.Va. WATW Ashland, Wis. WDUZ Green Bay, Wis. WRJN Racine, Wis. WRDB Reedsburg. Wis WRIG Wausau, wis. KODI Cody. Wyo.

1410-212.6

WALA Mobile, Ala.
KTCS Fort Smith, Ark.
KERN Bakersfield, Calif.
KRML Carmel, Calif.
KKOK Lompoc, Calif.
KMYC Marysville, Calif. KCAL Redlands, Calif. KCOL Ft. Collins, Colo
WDOP Hartford, C
WMYR Fort Myers, Fla. WB!L Leusburg, Fla.
WONS Tallahassee, Fla WRIX Grifin, Ga, WSNE Cummings, Ga WDAX McRae, Ga. WLAQ Rome, Ga.
WTiM Taylorville, III. W AZY Lafayette, Ind KGRN Grinuell, lowa KLEM LeMars, Iowa
KCLO Leavenworth, Kans KWBB Wichita, Kans. WLB! Bowling Green, Ky. WHLN Harlan, Ky. KDBS Alexandria, La. WDDW Halfway, Md. WHAG Halfway. Md. WOKW Brockton, Mass.
WGRD Grand Ran, Mich. WGRD Grand Ran., Mic
KLFD Litehfleld, Minn. KLFD Litchfleld, Minn KRWB Roseau, Minn.
WDSK Cleveland, Miss. WDSK Cleveland, Miss WNOP North Platte, Ne WHTG Asbury Park. WDOE Dunkirk, N.Y. WSET Glen Falls. N.Y. WEGO Concord, N.C. wSRC Durham, N.C WING Dayton, Ohio KPAM Portland, Oreg. KOV Pittshurdh, Pa WPCC Clinton, S . WYMB Manning. S.C. WCMT Martin. Tenn. KBAN Athers, Tex KVLB Cleveland. Tex KXIT Dalhart. Tex. KADO Marshalt, Tex KBAL San Saba. Tex. KBAL San Saba, Tex. WIKI Chester, Va. WRIS Roanoke
WRDS S. Charleston, W.Va.
WKBH LaCrosse, Wis.
1420-211.1
WACT Tuscaloosa, Ala. KHFH Sierra Vista, Ariz. KPOC Pocahontas, Ark. KRDO Colo. Sprgs., Colo. KSTN Stockton, Calif WLIS Old Saybrook. Conn. WBRD Bradenton, Fia.

1000
250 250
250
250

5000 d
1000 d 1000 d

5000 500 d $1000 d$ 1000 d
500 d 5000
5000 1000 d 5000
1000

WDBF Delray Beach, Fla. 5000d WETH St. Aupustine, Fla. 1000 d
WAVO Avondale Estates, Ga. 1000 d WRBL Columbus, Ga. WPEH Louisville, G
WLET Tocoa, Ga.
KOLL Honolulu, Ha $\begin{array}{lr}\text { WINI Murphysboro, Ili. } & 500 \mathrm{~d} \\ \text { WIMS Michigan City, Ind. } & 5000 \mathrm{~d}\end{array}$ WIMS Michigan City, Ind. 50000 KJCK Junction City, Kans. 1000 d WTCR Ashland. Ky. WH BN Harrodsburg, Ky
WVIS Owensboro, Ky. K WBSM New Bedisord, Mass. WBEC Pittsfleld. Mas WKPR Kalamazoo, Mich. KTOE Mankato, Minn. WSUH Oxiord, Miss. WQBC Vicksburg,
KBTN Neosho. Mo. KBTN Neosho. Mo.
KOOO Omaha, Nebr. KOOX Omaha, Nebr. K. Mex. WALY Herkimer, N.Y. WACK Newark, N.Y. WMYN Mayodan. N.C. WGAS S. Gastonia, N.C
WVOT Wilson, N.C. WVOT Wilson, N.C. WHK Cleveland, Ohio
KYNG Coos Bay, Oreg. WCOJ Coatesville, Pa. WCED DuBois, Pa. WEUC Ponce, P.R. WCRE Cheraw, S.C. WEMB Erwin, Tenn. KFYN Bonham, Tex. KTRE Lufkin, Tex.
KGNB Now Braunfels, Tex. KPEP San Angelo, Tex. WWSR St. Aluans, Vt. WDDY Gloucester, Va.
WKCW Warrenton, WKCW Warrenton, Va.
KITI Chehalis-Centralia

Wash. 1000 $\begin{array}{ll}\text { KREN Renton, Wash. } & 500 \mathrm{~d} \\ \text { KUJ Walla Walla, Wash. } & 5000\end{array}$ WPLY Plymouth, Wis.

1440-208.2
WHHY Montoomery, Ala. KDOT Scottsdale, Ariz. KHOG Fayetteville, Ark.
KOKY Little Rock, Ark. KVON Napa, Calif.
KPRO Rlverside. Call. WBIS Bristol, Conn. WABR Winter Park. Fl WWCC Bremen, Ga. WGIG Brunswick, Ga
WRAJ Anna, Ill. WRAJ Anna, III. WPRS Paris, Ill. WGEM Quincy, III, WPGW Portland, Ind.
KCHE Cherokee, Iowa KCHE Cherokee, lowa KEWI Topeka, Kan
WCDS GIasgow, Ky WKLX Paris, Ky.
WE2J Williamshurg WE2J Wiliamsburg, WJAB Westbrook, Me.
WAAB Worcester, Mass WAAB Worcester, Mass
WBCM Bay City, Mich. WDOW Dowagiac, Mic
WCHB Inkster, Mich. WCHB Inkster, Mich.
KEVE Golden Valley, Minn WHET Lucedale. Miss. WJLK Asbury Park. N.J. W MVB Millville, N.J.

1430—209.7

WFHK Pell City, Ala KHBM Monticello. Ark

 KHBM Monticello. Ark. KAMP El Centro, Calif KARM Fresno. Calif. KALI San Gabriel, Cal. KJAY Sacramento, Cal. KOSI Aurora, Colo. Will Homestead, Fla. WLAK Lakeland, Fla,WPCF Panama City, Fla. WPCF Panama City, F WGFS Covington, Ga WRCD Dalton, Ga. WWGS Tifton, Ga.
WEEF Highland Park, WEEF Highland Park
WCMY Ottawa,
WCR. WIRE Indianapolis, In KASI Ames. lowa KMRC Morgan City, La.
WNAV Annapolis Md. WNAV Annapolis, Md. WTTT Amherst, Mass. WHIL Medford, Mas
WION Ionia, Mlch. WION Ionia, Mich.
WBRB Mt. Clemens, Mich. WLAU Laurel, Miss.
KAOL Carroliton, Mo. KAOL Carroliton, Mo
WIL St. Louis. Mo. WIL St. Louls, Mo. Nebr.
KRGI Grand Island. Nebr

K

WENE Endi, N.M.
WENE Endicott. N. Y. WMNC Morganton, N.C.
WDJS Mt. Olive, N.C.
WRXO Roxboro, N.C.
WFOB Fostoria, Ohio
WFOB Fostoria, Ohio KALV Alva, Okla. KGAY Salem, Orea WVAM Altoona, Pa. WVAM Altoona, Pa. WNEL Caguas, P.R.
WBLR Batesuurg. S.C.
WATP Marion, S.C. WBUG Ridgeland, S.C.
KBRK Brookings, S. Dak. 1000 d
1000 d 1000 d
1000 d
5000 5000 5000
500 d 500 d
1000 WGYW Fountain City, Tenn
 WHER Memphis. Tenn. KSTB Breckenridg Tex. KEES Gladewater. Tex. 1000 WIVE Ashland, Va. 500 d
1000
WEIR Weirton, W.Va.
WBE Beaver Dam, Wis.
1000 WBEV Beaver Dam, Wis
rk. 111.

WMITE'S

R A D (0)

Kc. Wave Length W.P.
WPAR Parkersburg, W. Va. 1000 KFIZ Fond du Lac. Wis. WPFP Marshfield, wis. WRCO Richland Center, Wis KVOW Riverton, Wyo.

1460-205.4
WFMH Cullman. Ala. WPNX Phenix City, Ala. KCCL Paris. Ark A KTYM Inglewood. Calif KDON Salinas, Calif. KYSN Colo. Soros Colo WBAR Bartow, Fia. WZEP OeFuniak Springs WMBR Jacksonville, Fla. WOMF Buford, Ga. WROY Carmi, III. WIXN Dixon, Ilt. WKAM Goshen, Ind WOCH North Vernon, Ind. KSO Des Moines. Lowa
$K C R B C h a n u t e, ~ K a n s . ~$ WRVIS Mt. Vernon. Ky. WAJL Baton Rouge. La KBSF Springhill, La. WEMD Easton, Md. WBRN Bia Rapids, Mi WPON Pontiac, Mich. KOWA Hastings, Minn. WELZ Belzoni. Miss. WACY Moss Point, Miss KADY St, Charles, Mo. KRNY Kearney, Nebr, JJZ Mi. Holly, N.J. WOKD Albany, N.Y. WVOX Now Rochelle, WFVG Fuquay Sprgs., N.C. WRKB Kannapolis, N.C WBNS Columbus, Ohio WPVL Painesville, Ohio KROW Dallas, Oreg. WMBA Ambridge, Pa. WCMB Harrisburg, Pa. WBCU Union, S.C. WJAK Jackson, Tenn. WEEN Lafayette, Tenn. KLLE Lubbock, Tex WACO Waco. Tex. WPRW Manassas, V a. WRAD Radford, V KYAC Kirkland, Wash WBUC Buckhannon w va WRAC Racine. Wis. W, Va. 5000 d WTMB Tomah. Wis.

1470—204.0

WBLO Ever@reen, Ala. KZNG Hot Springs, Ark. KUTY Palmdale, Cal KXOA Sacramento, Calif WMMW Meriden. Conn WRBD Pompano Beach FIa 5000 WOOL Athens
WCLA CIartor, Ga.
WMPP Rome, Ga, 5000
0d
WMBO Peoria, III.
KTRI Sioux City Iow
KWVY Waverly lowa
KARE Atchicon Kans
KLIB Liberal, Kans
WSAC Fort Knox K
KTDL Farmersvilie,
KPLC Lake Charlec L
WLAM Lewiston. Maine
WJOY Salisbury, Md.

Ke. Wave L
1520-197.4

KGHT Hollister, Calif. KACY Port Hueneme
WTLN Apopka, Fla. WGNP Indian Rocks Beach. WIXX Oakland Park, Fla. WHOW Clinton, Ill.
WLUV Loves Park. II WSVL Shelbyville, Ind KSIB Creston, lowa KXKW Lafayette, La WVCB Bel Air, Md.

WYNZ Ypsilanti, Mich. KOLM Rochester, Minn. WYRP Ocean City, N. \mathbf{j}. KHIP Albuquerque, N. Miex. WKBW Buffalo, N.Y. WBNO Bryan, Ohio KOMA Okla, City, Okla.
KYMN Oregon City, Ore. WCHE West Chester, Pa. WRAI Rio Piedras, P. R
WBHT Brownsville, Tenn.

1530-196.1

WLCB Moulton, Ala. WCTR Chestertown. Mo. KCAT Pine Bluft, Ark KFBK Sacramento, Calif.
WENG Englowood, Fla. KNBI Norton, Kan
KWLA Many, La. WRPM Poplarville. Miss. WTHM Lapeer, Mich. WERX Wyoming, Mic KMAM Butler, Mo. KNBE Lincoln, Neb.
WCKY Cincinnati. Onio WMBT Shenandoah, Pa. KGTN Georgetown, Tex. KGBT Harlingen, Tex. KCLR Ralls. Tex. WQVA Quantico, Va.
KGHY Cheyenne,
Wy.

1540-195.0

KPOL Los Angeles, Calif. 50000 WBSR Pensacola, Fla. WSMI Litchfield, III. WBNL Boonville. Ind. WLOI Laporte, Ind. KNEX McPherson, Kans. KLKC Parsons, Kans. WMRR Marshall, Mich.
WLEF Greenwood, Mis
KBXM Kennett, Mo. WPTR Albany, N.Y. WRPL Charlotte, N.C. WIFM EIkin, N.C.
WBCO Bucyrus, ${ }^{\text {O }}$ hi WBCO Bucyrus, O hio
WABQ Clevetand, Onio WABQ Clevetand.

$$
\begin{aligned}
& \text { KWFS Eugene, Ore. } \\
& \text { WJMI Philadeiphia, Pa }
\end{aligned}
$$ WPTS Pittston. Pa.

WPME Punxsutawney, Pa. WADK Newport. R.I.
KCUL Ft. Worth, Tex. KGUL Gq . Worth, Tex. WRGM Richmond, Va. WRGM Richmond, Va.
WTKM Hartford, Wis.

1550—193.5

WBHM Birmingham, Ala. 50000 WAAY Huntsville, Ala. KFIF Tueson, Ariz. KXEX Fresno, Calif. KDAB Arvada, colo. WRIZ Coral Gables, Fla. WYRT New Smyrna WSMA Smyrna, Ga. WCS Morris III, Ill WPDF Corydon, Ind WCTW New Castle, Ind. WKQV Sullivan, Ind. KIWA Sheldon, lowa KEDD Dodge City, Kans. KNIC Winfield, Kan. WMSK Mine, KY.
WLUX Baton Rouge,
WOKX Baton Rouge,
WSER EIkton. Míd

1000

 1000 d 000 d 250d $1000 d$$5000 d$

000d 000d 500 d
1000
\qquad 5000 d 50000
250 d 250 d 000 d
1000 d
250 000 50000
1000 1000
1000 d $250 d$ 250 d 50000 250d $250 d$
1000 5000 d 5000 d
10000 250d

WAGC Centre. Ala
KB!B Monette, Ark KPMC Bakersfteld. Calif. WBYS Canton, Ill. WRIN Rensselaer, Ind KSWI Council Blufts, lowa KABI Abilene, Kan. WPHN Liberty, Ky. WDXB Paducah, Ky.
WSHN Fremont, Mich. WJAQ Jackson, Miss. WSAO Senatobia, M KGMO Cape GIrardeau, Mo. KICS Hastings, Neb. WCGR Canadaiqua, N.Y. WBAZ Kingston, N.Y. WBVM Utica, N.Y. WBVM Utica, N.Y.
WPXY Greenville, N.
WNOH Raleigh, N.C.
WTYN Tryon, N.C. . WPEG Winston.Salem, N.C.
KUTT Fargo, N.D. KUTT Fargo, N.D.
WDLR Delaware KMAD Melaware, Ohio KREK Sapulpa, Okla. WLOA Braddock, Pa. WKFE Towanda, Pa. WKFE Yauco, P.R.
WBSC Bennetsville. WBSC Bennetsvilie, S.C.
WTHB N. Augusta, S.C. KCAN Canyon. Tox. KWBC Navasota, Tex WKYE Bristot, Cenn. WTPI Cookville, Tenn. WKPT Kingsport, Tenn.
KCOM Comanche. Tex. WKBA Vinton, Va. WKVK Charlestown, W.Va.

WBOL Nashville, Tenn. KCAD Abilene, Tex. KHBR Hillsboro, Tex GGUL Port Lavaca T.

WCRL Oneonta, Ala. WRWJ Selma, Ala. KBIT Fordyce. Ark. KBSA Alisal Calif. KCVR Lodi, Cal. KACE Riverside, Calif WTWB Auburndale, Fla. WPAP Fernandina Beach, WOKC Okeechobee, Fla
WJOE Ward Ridge, Fla. WMES Ashburn, Ga WGHC Clayton, Ga. WEAD Collede Park, Ga. WGSR Millen, Ga WOKZ Alton, III.
WFRL Freeport, IIt WBEE Harvey, Ill.
WTAY Robinson. Ift. WILO Frankfort, Ind. WAWK Kendallville, Ind.
WNUW New Albany, Ind. KMCD Fairfleld, lowa KJFJ Webster City, Iowa KNDY Marysville, Kans WKKS Vanceburg, K WABL Amite, La. KLLA Leesville, La. WAQE Towson, Md. WPEP Taunton, Mass WMLO Beverly, Mass. WDEW Westfield. M
WMRP Flint, Mich. WFUR Grand Rapid Mich KUXL Golden Valley, Minn. I000d WONA Winona. Miss. WAFS Amsterdam, N.Y

250 d
10000 d 10000 d
250 d 250 d
1000 d 500 d
1000 d1000d10000 d
250 d

K K K K

$$
\begin{array}{r}
2540 \\
\$ 0000
\end{array}
$$

$$
250 d
$$

$$
\begin{aligned}
& 250 d \\
& 250 d
\end{aligned}
$$

$$
\begin{array}{r}
2500 \\
250 d
\end{array}
$$

$$
\begin{aligned}
& 250 d \\
& 1000 d
\end{aligned}
$$

$$
\begin{aligned}
& 250 d \\
& 250 d
\end{aligned}
$$

$$
\left.\begin{array}{r}
2500 \\
1000 \\
1000 d \\
250 \\
250
\end{array} \right\rvert\,
$$

WAPC Riverhead, N.Y.
 50000 WTLK Taylorsvilie. N.C

\qquad W WCLW Mansfield, 0 WPTW Piqua, Ohio KTAT Frederick, Okla. KOLS Pryor, okla. KWAY Forest Grove, Oreg. KOHU Hermiston, Oreg.
WPGM Danville, Pa. WPGM Danville, Pa. WBUX Doylestown, Pa WQTW Latrobe, Pa, WFGN Gaftney, S.C. WIES Johnston, S.C. WLSC Loris, S.C. WHLP Centerville, Tenn. WCLE Cleveland, Tenn WTRB Ripley, Tenn. KZOL Farwell, Tex. KVLG La Grange, Tex. KTER Terrell, Jex. KWIC Salt Lake City, Utah
WSWV Pennington Gap, WSWV Pennington Gap,
WYTI Rocky mount, Va,
WAPL Apoleton, Wis. WAPL Apoleton,
$1580-189.2$
WEYY Talladega, Ala.
KYND Tempe, Ariz.
KPCA Marked Tree, Ark.
KPCA Marked Tree, Ark.

KFDF Van Buren, Ark. KMRE Anderson, Cal. KWIP Merced, Calif.	KDAY Santa Monica, Cal. $\quad 50000$
KHU	KHUM Santa Rosa, Calif. 500d WSBP Colorado Spros., Colo. WSBP Chattachoochee, Fla. 1000 d

WWIL Ft. Lauderdale, Fla. 10000 WVGT Mount Dora, Fla. WCCF Punta Gorda, Fla WPFE Eastman, Ga. WLBA Galnesville, G WKIG Glenville, Ga. WDON DuOusin ii WBBA Pittsfield, III. WCNB Connersville. Ind. WJVA South Bend, Ind.
WAMW Washington, Ind. KCHA Charles City, Iowa
KWNT Davenport, Iowa KWNN Denison, lowa WAXU Georgetown, Ky.
WMTL Leitchfield, KY.
WPKY Princeton, Ky. 500 d
10000 d

10000 d y. 1000 d

Kc. Wave Length
WAQI Ashtabula, Ohio WBLY Springfield, ohio WTTF Tiffin, Ohio KUSH Cushing, Okla KOH Eugene. Oreo WHOL Allentown, Pa.

W.P.	Kc.	Wave Length	W.P.	KC.	Wave Length	W.P.
1000d	WHRY		500d	KWEL	Midland, Tex.	1000d
1000d	WFIS	Fountain Inn, S.C.	1000 d	KCFH	Cuero. Tex.	500d
500d	WFNL	No. Augusta, S.C.	500d	KMAE	Mckinney, Tex.	1000d
1000d	WH8T	Harriman, Tenn.	5000d	KOGT	Oranes, Tex.	1000
5000	WK8J	Milan, Tenn.	1000 d	KBBC	Centerville, Utah	1000 d
1000d	KBEB	Borger, Tex.	500d	WHLL	Wheeling, W, Va.	5000d
500d	KBOR	B rownsville, Tex.	1000	WCWC	Ripon. Wis.	5000

Canadian AM Stations by Frequency

Abbreviations: Kc., frequency in kilocycles; W.P., watt power; d, operates daytime only; n, operates nighttime only. Wavelength is given in meters,

c. Wave Length	. P	Kc. Wave Length	.	c. Wave Length	W	Kc. Wave Length	Y.P.		
555.5			$2.500 \mathrm{n}$	CJCH Halifax, N.S.	10.000 d	1110-272.6			
СВК Regina, Sask. CBT Grand Falls, Nfld.	$\begin{aligned} & 50.000 \\ & 10.000 \end{aligned}$			CJCJ Woodstock, N.B. CKCY Sault Ste. Marie. Ont 10.000 a		L Cornwall, Ont. 1 Galt. Ont.	$\begin{gathered} 1,000 \\ 250 \mathrm{~d} \end{gathered}$		
550-545.1		CBF Montreal, Que. CBU Vancouver, B.C.	$\begin{aligned} & 50,000 \\ & 10.000 \end{aligned}$	Ont.	10.000 d 5.000 n	1130-265.3			
CFBR Sudbury, Ont. CFNB Fredericton, N.B. CHLN Trois-Rivieres, Que.	$\begin{array}{r} 1.000 \mathrm{~d} \\ 50.000 \\ 10.000 \mathrm{~d} \end{array}$	710-422.3		CKNX Wingham, Ont	$\begin{aligned} & \text { 5.000n } \\ & 2.500 \mathrm{~d} \\ & 1,000 \mathrm{n} \end{aligned}$	CKWX Vancouver, B.C.	50,000		
CKPG Prince George, B.C.	$\begin{array}{r} 10.000 \mathrm{~d} \\ \quad 250 \end{array}$	CJSP Leaminton, Ont	${ }_{5}^{1.0000}$	930-322.4		1140-263.0			
560-535.4		CKVm Velle-Marie, Que.		CFBC Saint John, N.B.	10.000 d $5,000 \mathrm{n}$		10,000 1,000		
CFOS Owen Sound, Ont. CHCM Marystown, Nfld.	1,000 $1,000 \mathrm{~d}$	730-410.7		CJCA Edmonton, Alberta	$\begin{array}{r} 5,000 n \\ 10.000 \mathrm{~d} \\ 5.000 \mathrm{n} \end{array}$	CKXL Calgary, Alta.	10,000		
CJKL Kirkland Lake, Ont. CKCN Sept-lles, Que.	$\begin{array}{r} 500 n \\ \hline \quad 5,000 \\ \hline 5,000 \end{array}$	CJNR Blind River. CKAC Montreal, Que	$\begin{array}{r} 1,000 \\ 50,000 \end{array}$	CJON St. John's Nfid. $940-319.0$	10,000	CHSJ Saint John, N.B.	$\begin{gathered} 10.000 \mathrm{~d} \\ 5.000 \mathrm{n} \end{gathered}$		
570-526.0		CKLG North Vancouver.	$\begin{gathered} 10,000 \mathrm{~d} \\ 5.000 \mathrm{n} \end{gathered}$	CBM Montreal, Que. CJGX Yorkton, Sask.	50.000 10.000 d	CKSA Lloydminster, Alta. 10.000			
CFCB Corner Brook, Nfid. CJEM Edmundston, N.B.	$\begin{array}{r} 1,000 \\ 5,000 \mathrm{~d} \\ 1,000 \mathrm{n} \end{array}$	CKLG North Vancouver, ${ }^{\text {B.C }}$	10,000	CJGX Yorkton, Sask. $10,000 \mathrm{~d}$ $1,000 \mathrm{n}$ 1,000 CJIB Vernon, B.C. $950-315.6$		CKTR Trois-Rivieres, Que. CKX Brandon. Man.	10.000 d 1.000 n 10.000 d		
C	1.000	CBL Toronto, Ont.	50,000						
FWH Whi	1,000	CBXA Edmonton, Alta.	250	950-315.6CKBB Barrie, Ont.		1170-256.3			
580-516.9		7		CKNB Campbeliton,	10.000 d	CFNS Saskatoon. Sask.	1,000		
CFRA		CFDR Dartmouth, N.S.	5,000			1220-245.8			
	0.000 n	MR Camrose, Alta.	10.000	960-312.3		CJOC Lethbridge, A	10.000d		
CHLC Hauterive, Que.	5.000 d	CKSO Sudbury, Ont.	10.000 d	,	10.000	cJoc Lethbridge,	5.000 n		
	2.500 n	CKSo Suduary, ont.	5,000n		10.000		1.000		
CKPR Port Arthur. On	5.0000 d	CHIC Brampton, Ont.	1,000d	CKWS Kingston, Ont.	5.000	C	1,000 10.000		
	1.000 n		500 n	970-3		CKCW Mo	10.000		
JAE	$\begin{array}{r} 10.000 \\ 500 \end{array}$	800-374.8				CKSM Shawinigan, Que.	1.000		
CKY Winnipeg,	50.000	CFOB Fort Frances, Ont.	1,000d			1230-243.8			
590-508.2						CFBV Smithers. B.C.	1.000 d		
CFAR Flin Flo	1.000		10.000				250 n		
CKEY Toron	5.000	CJ	50.000 d 10.000 n	CBV Queb	5.000		250n		
CKRS Jonquiere, Qu VOCM St. John's,	1.000 10.000	BJBQ Belleville. Ont. cJLX Fort Wiliam, ont.	10,000 1,000	CFPL Lon	10.000 r 5 5.000 n	CFPA Port Arthur, On	1.000d		
	10,0		10.000 d	CHEX Peterborough, Ont.	5.000 10.000	CHFC Churchill, Man.			
600-499.7		CKOK Penticton, B.C.	$\begin{array}{r} 5,000 \mathrm{n} \\ 10,000 \mathrm{~d} \end{array}$	CKGM Montreal, Que. CKNW New Westminster.					
CFCF Montreal. CFCH Callander,	5.000 10.000 d	CKLW Windsor, Ont.	500 n 50,000			Que, 1,000d			
	5.000 n	VOWR St. John's, Nild.	1.000	CKRM Regina, Sask.	5000 n 10.000 d	CKMP Midland. Ont. CKTK Kitimat, B.C	250 1.000 d		
QC Saskatoon, Sask.	5,000 10,000	810-370.2		CKRM Regina, Sask.	5,000n	CKTK Kitimat, B.C.	1.000 d 250 n		
CL Truro. N.	1,000	CFAX Victoria,	1,000d	$990-302.8$		VD Val d'Or. Que	1.000 d		
$610-491.5$		850-352.7		CBW Winni	50,000	VOAR St. John's, Nfld.	100		
CHNC New Carti	5.000	CJJC Langley, B.C.				1240-241.8			
CHTM Tompson.	1.000 1.000	CKRD Red Deer, Alta.	10.000 d			CFLM La Tuque, Qu	1,000d		
CKML Mont Laurier, p.a.	1,000	CKLV		CKBW Bridgewater, N.S.	10.000	CFPR Princo Pupert	250n		
CKTB St. Catharines,		CKLV	50.000 d $10,000 \mathrm{n}$	1010-296.9		CFPR Prince Rupert. B			
Ont. 10	0.000 d 5.000 n			CBX Edmonton Alta		CFVR Abbotsford, B,C.	250 250		
CKYL Peace River. Alta.	$\begin{array}{r} 5.000 \mathrm{n} \\ 1.000 \end{array}$	860-348.6			50.000 50.000	CJCS Stratford	500 d		
620-483.6		CHAK Inuvik, N.W	10,000 1,000	5-285.5		CJRW Summerside, P.E.I, 250			
		CJBC Toronto. Ont.	50,000						
	$\begin{array}{r} 10.000 \mathrm{~d} \\ 2,500 \mathrm{n} \end{array}$	900-3		CFGP Grande Prairie,		CKCQ-1 Williams Lake. B.C. 250			
CKCK Re日ina, Sask. CKCM Grand Falls, Nfld.	5.000	CHML Hamilton, Ont.		CHUM Toronto, Ont. Alta. 5.000 d		$\begin{array}{ll}\text { CKBS St, Hyacinthe, Qite. } & 250 \\ \text { CKLS La Sarre, Que. } & 250\end{array}$			
630-475.9		CHNO Sudbury. Ont. 1	10,000d	CJIC Saulte Ste. Marie, $\begin{gathered}\text { Ont. } \\ 10,000 \mathrm{~d}\end{gathered}$					
		CJBR Rimouski. Que. $\begin{array}{l}1,000 \mathrm{n} \\ \\ \mathbf{1 0 , 0 0 0}\end{array}$ 10.000				1250-239.9			
CFCO Chatham, Ont. CFCY Charlottetown, P.E.I. CHED Edmonton, Alta. CHLT Sherbrooke, Que.	1.000	CJVI Victoria, B.C. 10,000 CKBI Prince Albert, Sask. 10.000 CKDR Dryden, Ont. 1.000 d CKJL St. Jerome, Que. 1,000 CKTS Sherbrooke, Que. 1.000		CJNB North Battleford,Sask, $2,500 \mathrm{n}$ 10,000		CBOF Ottawa, Ont. 10.000			
	. 5.000			CHSM Steinbach. Man	10.000				
	10.000 10.000 d			CKSB St. Boniface, Man.	10,000	CHWO Oa	1.000 d		
	5.000 n						500 n 0.000 d		
CJET Smith Falls,	1.000	910-329.5				CFCN Calgary, Alta. 10000 CJLR Quebec. P.Q. 10.000			5.000 n
CKAR Huntsville, Ont	1.000 1.000			CKOM Saskatoon. Sask. $\quad 10,000$					
CKRC Winnipeg. Man.	10.000	CBO Ottawa, Ont. 5,000		$1260 — 238.0$					
640-468.5		$1,000 \mathrm{n}$ CHRL RobervaI. Que. 1.000 CJDV Drumhelier, Alta. 5,000 CKLY Lindsay. Ont. $\mathbf{1 , 0 0 0}$ 920 329.9		$1070-280.2$		CFRN Edmonton, Alta. 50.000			
CBN St. John's. Nild.	10.000			CBA Sackville, N.B.		1270-236.1			
680-440.9					1.000 n	CFGT St. Joseph d'Alma, Que 1,000			
FA		920-329.9		1090-2					
CHLO St. Thomas, Ont.	1,000			CHEC Lethbridge, Alta.	5.000	CHWK Chilliwack.	10.000		
0 B Winnipeg. Man.	10.000 d		, 1,000	CHRS St. Jean, Que.	10,000d	CJCB Sydney, N.S.	10,000		

1280-234.2
CHIQ Hamilton, Ont. CJMS Montreal, Que.
CJSL Estexan. Sask.
CKCV Quebec, Que.

1290-232.4

cfam Altona, Man.
cksl London. Ont.
1300-230.6
Cbaf Moneton. N.B.
CIME Regina. Sask.
1310-228.9
CFGM Richmond Hill.

CHGB Ste-Anne-de.Pocatiere,
CKOY Ottawa. Ont. Que. 50,000
1320—227.1
CHQM Vancouver, B.C.
CJSO Sorel, Que.
CKEC New Glasgow, N.S
CKKW Kitchener, Ont.
1340—223.7
CFGB Goose Bay. Nfld.
CFOM Quabec, Que.
CFSL Weyburn. Sask.
CFYK Yellowknife, N.W.T 250 n
CHAD Amos, Que. 250
CHRD Drummondville, Que. 250
CJAF Cabano, Que.
10.000
$10.000 d$
10.000 a
5.000 n
5.000π
5,000 5,000
1,000
W.P. Kc. Wave Length W.P.|Kc. Wave Length W.P.|Ke. Wave Length W.P.

CKDH Amherst. N.S. CKRN Rouyn, Que. CKSW Swift Current. Sask.

1410—212.6
CFMB Montreal, P.Q. $1420-211.1$

U. S. Commercial Television Stations by States

Territories and possessions follow states. Chan., channel; C.L., call letters.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Location C.L. Chan.} \& Location C.L. \& Location \& C.L. Chan. \& Location \& C.L. Chan. \\
\hline \multicolumn{2}{|l|}{EJ Paso-Juarez, Mex. XEJ-TV 5} \& UTAH \& Richland Seattle \& \[
\begin{array}{rr}
\text { KNOU } 25 \\
\text { KING-TV } \& 5
\end{array}
\] \& La Crosse Madison \& \[
\begin{array}{rr}
W K B T \& 8 \\
W \& S C-T V \\
\hline
\end{array}
\] \\
\hline Ft. Worth-Dallas \& \[
\begin{array}{ll}
\text { KTVT } \& 11 \\
\text { WBAP-TV } \& 5
\end{array}
\] \& Salt Lake City KCPX.TV 4 \& \& \& \& WKOW-TV 27 \\
\hline \multirow[t]{2}{*}{Harlingen Houston} \& KGBT-TV 4 \& SLUTV 5 \& \& \begin{tabular}{c}
KOMO-TV \\
KHQ-TV \\
\hline
\end{tabular} \& Milwauk \& WISN-TV 12 \\
\hline \& KHOU-TV
KTRK-TV
K \& MONT \& Sp \& KXLY-TV 4 \& MIWauke \& WITI.TV 6 \\
\hline \& KPRC.TV \& VERMONT WCAX-TV s \& \& KREM-TV
KTNT.TV
11 \& \& WTIMJTV \(\stackrel{4}{4}\) \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Laredo \\
Lubbock
\end{tabular}} \& KGNS.TV \({ }^{8}\) \& Burlington WCAX-TV 3 \& Tacoma-Seattle
Tacoma \& KTNT.TV 19 \& Wausau \& \[
\text { WSAU-TV } 7
\] \\
\hline \& KCBE.TV 13 \& VIRGINIA \& Yakima \& MA.TV
KNDO
23 \& \& NG \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Lufkin \\
Midland \& Odessa Monahans \& Midland
\end{tabular}} \& KTRE-TV 9 \& Bristol-Kingspert \& John \& \& \& Casper \& KTWO-TV 2 \\
\hline \& KMIO.TV \& City, Tenn. WCYB-TV 5 \& WEST VIR \& GINIA \& Cheyenne \& KFBC-TV 5 \\
\hline \& \& Harrisonburg W.SVA.TV
Norfolk
WTAR.TV \& \& \& Riverton \& KW'3B.TV 10 \\
\hline \& KOSA-TV 7 \& Hampton. Norfolk WVEC-TV 13 \& Charle \& WCHS.TV 8 \& GU \& \\
\hline Port Arthur-Beaumont \& Kt \({ }_{\text {KPAC-TV }}\) \& Portsmouth-Norfolk. WAVY-TV 10 \& Clarksburg \& WBOY-TV 12 \& Agana \& KUAM-TV \\
\hline San \& KACB-TV \& Newport News WRVA.TV 12 \& \& WSAZ.TV 3 \& UERTO \& RICO \\
\hline San Angelo \& KCTV \({ }^{8}\) \& WTVR 6 \& Oak Hill \& WOAY-TV 4 \& goualina. \& WOLE-TV 12 \\
\hline \multirow[t]{3}{*}{San Antonio} \& \[
\begin{aligned}
\& \text { KENS:TV } \\
\& \text { KONO.TV } \\
\& \hline 12
\end{aligned}
\] \& \& \multicolumn{2}{|l|}{Parkersburg-Marietta, \({ }^{\text {O }}\).} \& Mayaguez \& WORA-TV
WSUR-TV
W \\
\hline \& KWEX-TV 41 \& ke WOBJ.TV 7 \& Weston. Fairmont \& WJPB-TV 5 \& Ponce \& WFIK.TV 7 \\
\hline \& WOAI.TV 4 \& WSLS-TV 10 \& Wheeling \& WTRF-TY \& San Juan \& WAPA.TV 4 \\
\hline Sweetwater-Abilen \& KPAR-TV 12 \& Lynchburg-Roanoke WLVA.TV 13 \& \multicolumn{2}{|l|}{WISCONSIN} \& \& WKAQ.TV \\
\hline Tyler-Longview \& KLTV 7 \& ASHINGTON \& Eau Claire \& \multirow[t]{4}{*}{\[
\begin{array}{ccc}
\text { WEAU-TV } \& 13 \\
\text { WBAYTTV } \\
\text { WLUK-TV } \& 11 \\
\text { WFRV } \&
\end{array}
\]} \& Caguas-San Juan \& BM.TV 11 \\
\hline Waco
Weslaco \& KWTX-TV 10 \& Bellingham KVOS-TV 12 \& \multirow[t]{3}{*}{Eau Claire Green Bay} \& \& \& \\
\hline Weslaco \({ }_{\text {Wichita }}\) Falls \& KRGV.TV
KFDX.TV

K \& Reasco-Kennewick-Richland \& \& \& Charlotte Amalie \& WanB.TV

\hline , \& KAUZ \& KEPR.TV 19 \& \& \& \&

\hline
\end{tabular}

U. S. Educational Television Stations by States

Territories and possessions follow states. Chan., channel; C.L., call letters.

Location C.L. Chan.	Location C.L. Chan.	Location C.L. Chan.	Location	.L. Chan.
ALABAMA	ILLINOIS	NEW MEXICO	SOUTH	AK'DTA KLSD.TV 2
	Carbondale WSIU Chicago Crbana-Champaign WILLTW WIV 11	NEW YORK	TENNES	KLSDETV ${ }^{\text {S }}$
Mobile Montgomery Mount Cheaha State Park $\underset{\text { WARQ }}{26}$ Mount Cheaha State Park	Urbana-Champaign IOWA		Memphis Nashville	$\begin{aligned} & \text { WrNO-TV }{ }^{10} \\ & \text { WOCN-TV } \end{aligned}$
ARIZONA	Des	Schenectady WMHT 17	E	
Phoenix Tucson KAET KUAT 8 6	Louisville WFPK-TV 15	NORTH CAROLINA	Dallas Houston	$\text { KERATV } 13$
CALIFORNIA	LOUISIAN	harlotte WUTV 36	Richards	23
mento	Monroe New Orleans \quad WYES.TV ${ }_{8}^{13}$	NORTH DAKOTA	nto	
	MAINE	Fargo		
COLORADO	WCBE 10			$\begin{array}{ll} K 1 S U S V & 12 \\ K: N S S . T V & \end{array}$
iver KRMA.t	WMED.TV 13			
CONNECTICUT	10		Salt La	KUED 7
ord	MASSACHUSETTS	Newark ${ }^{\text {Columbus }}$ WGSF 28	VIRGINIA	
DELAWARE	Boston WGBH.TV 2	Oxford WMUB.IV ${ }_{\text {OTE }}$		
	AN	OKLAHOMA	n-Norfolk	$\begin{aligned} & \text { WHROTV } 15 \\ & \text { WYAH-TV } \end{aligned}$
mington WHYY-TV 12	it			
DISTRICT OF COLUMBIA	daga-East Lansing WMSB 10	ma City $\begin{gathered}\text { KOKHETA } \\ \\ \text { KOED.TV } \\ \text { K } \\ \text { K }\end{gathered}$	W	GTON
FLORIDA	SOTA	OREGON	Pullman Seattle	WSC-TV 10
WUFT	WDSE	Corvalis KOAC-TV 7	Tacom	V 56
Wsonville WSECT 7	кTCA.TV 2	Portland KOAP-TV 10	Yakim	E-TV 47
Tallahassee WFSU-TV 11	ISSOURI	PENNSYLYANIA	WISCONSIN	
Tampa-St. Petersburg wedu 3	Kansas City KCSO-TV 19 St. Louis	arield ${ }^{\text {WPSX-TV }} 3$	WISCO	WHA.TV 21
GEORGIA	NEBRASKA	Pittsburgh WaEO WQEX 16 W		$W M \vee T$
	Lincoln KUON-TV 12	SOUTH CAROLINA	PUERTO RICO	
SSPTV ${ }^{28}$	EW HAMPSHIRE	charleston WITV 6	Mayaguez	WIPM-TV ${ }^{3}$
Waycross ${ }^{\text {a }}$ WXGA.TV ${ }^{\text {b }}$	Durham WENH	Greenville WNTV 29	San Juan	UPR-TV :

Canadian Television Stations by Cities

Chan., channel number; Bullet (") indicates recent change.

Location	C.L. Chan.	Location C.L. Chan.	Location	C.L. Chan		Location	C.L. Chan.
Adams Hill. B.C	CFCR-TV-8 11		Barrie, 0 nt.	CKVR.TV	3	Burnaby, B.C.	GHAN-TV 8
Alticane. Sask.	CKBI.TV-1 10	- CKSS-TV	Bayview, N.s.	CJCH-TV-2 CHSJ-TV.1	${ }_{6}^{6}$	Burns Lake, ${ }^{\text {B.C }}$ Calgary, Alta. Cala	FTK-TV-3 ${ }_{\text {LFCN-TV }}$
Amherst. N.S.	CJCH-TV.3 ${ }^{8}$	Bale St. Paul, P.Q. \qquad	Bon Accord. N.B. Boston Bar, B.C.	$\text { CFCR.TV. } 9$	5	Calgary, Alta.	EHCT.TV 2
Antigonish, N.S. Argentia, Nid.		Banf, Alta. CHCA-TV-2 10	8 randon, Man.	CKX-TV	5	Callander, 0nt.	こFCH-TV ${ }^{\text {SKCO.TV }}$
Ashcroft, B.C.	CFCR-TV-2 10	Bant Alta. CFCN-TV-2 8i	Burmis, Alta.	cJLH.TV. 3	3	Camphellton, N.B.	こKCO.TV

	Location C.L. C	ocation C.L. Chan.	cation
	(Bechervaise Mountain) CFGW.TV. 1	Moose Jaw. Sask. CHAB.TV Nakusp, B.C. Nakusp, B.C. CJNP.TV. CJNP.TV. 2 N	Sheet H arbour, N.S. CBHT-4 Shelburne, N.S. CBHT-
	CFGW-TV-1 6	Nakusp, B.C. CJNP-TV- 2 4 Nelson, B.C. CBUAT. 9	Sherbrooke, Que. CHLT.TV 7 Sioux Lookout, Ont. CBWAT-2 12
	Grand Falls, Nfid. CICN.TV 4	Newcastle, N.B. CKAM-TV-1 7	Sioux Laokout, Ont. CBWAT-2 12 Smithers, B.C. CFTK.TV-2 5
	Grande Prairie. Alta. CBXAT 10	Newcastle Ridge, B.C.	Smithers, B.C. CFTK.TV- 2 5 Sointula, B.C. CFKB-TV-4 5
	Greenwater Lake, Sa		Squamish, B.C. CHAR-TV.I
	Halifax,		St. John's, Nfld
	Halifax, N.S. CJCH-TV 5		
Location C.L. Chan.	Hamilton, Ont. CHCH.TV II		St. Quentin, N.B. CHAU-TV-2 10
	Huntsville, Ont. CKVR-TV-2 8	Oliver, B.C. CHBC.TV. 38	Stephenville, Nid. CFSN-TV ${ }_{8}$
V-1 10	Invermere, B.C. CFWL-TV-1 6	Ottawa, Ont. CBOFT	Stranraer, Sask. CFQC-TV.1 3^{*}
CHAU-TV 5	Inverness, N.S. CJCB-TV-1 6	Ottawa, Ont. CBOT	Sturgeon Falls, Ont. CBFST 7
	Jonquiere, Que. CKRS.TV 12	Ottawa, Ont. CJOOH-TV 13	Sudbury, Ont. CBFST-1 13
	Kamloods, B.C. CFCR-TV	Parry Sound, Ont. CKVR-TV-I 11	Sudbury, Ont. CKSO-TV 5
	Kapuskasing, Ont. CFCL-TV. 1	Passmore, B.C. - CHMS.TV-2 2	Swift Current, Sask. CJFB-TV
	Keams, Ont. Kelowna, B.C. CFCL-TV- 2	Peace River, Alta. CBXAT-1	Sydney, N.S. CJCB-TV
handier, P.Q. CHAU.TV.4 7	Kelowna, B.C. CHBC-TV	Peachland, B.C. CHPT.T	Temiscaming, P.Q. CBFST-2 12
riottetown, P.E.I. CFCY-TV 13	Keremeos, B C CHKCWAT	Pembroke, Ont. CHOV.TV 5	Temiscaming, P.Q. CJTK-TV-I
ase, B.C. CFCR-TV-8 II		Perce, Que. ${ }^{\text {Pren }}$ CHBC-TV-1 13	Terrace, B.C. CFTK.TV
hicoutimi, P.Q. CJPM-TV 6	Kingston, Ont. CKWS.TV 11		The Pas, Man. CBWB
hicoutimi, P.Q. CKRS.TV-2 2	Kitchener, Ont. CKCO-TV 13	Peterborough, ont. CHEX.TV 12	
earwater, B.C. CFCR-TV-10	Kokish, B.C. CFKB-TV. 29	Pivat, Alta. CHAT.TV.i 4	
Clermont, Que. CFCV-TV-1 75	Lethbridge, Alta. CJLH.TV	Port Alfred, P.Q. CKRS.TV.I	
Clinton, B.C. CFCR-TV. 49	Lillooet, B.C. CFCR-TV-1 11	Port Arthur, Ont. CKPR-TV 2	Trail, B.C. CBUAT
Corner Brook, Nfld. CBYT	Liverpool. N.S. CBHT-1 12	Port Daniel, P.Q. CHAU-TV-3 10	Trois-Rivières, Que.
	Lloydminster, Alta. CKSA-TV 2	Port Hardy, B.C. CFKB.TV.3 3	
		Prince	
	Malakwa, B.C.CHID-TV-1	Prince George, B.C. CKPG.T	
CKCK.TV-1 12			B.T
anbrook, B.C. CBUBT 10		Quebec, Que. CF	
	Matane, Que. CKBL-TV 9	Quebee, Que. CKMI-TV	CHEI
		Quesnel. B.C. CFCR-TV-11	
	Melita, Man. CKX.TV.2 9	Regina, Sask	
wson Creek, B.C. CJDC.TV		Regina, Sask,	12
Alta. CFCN-TV-I			
rumheller, Alta. CHCT-TV-1 12	Mont Blanc, Perce, Que.	Rimouski, Que. CJBR.TV 3	
dmonton, Alta. CBXT 5		Riviere-au-Renard CHAU-TV. 7	CKCK-TV-2
dmonton, Alta. CFRN-TV 3	M	Rivière du Loup, Que.	indsor, Ont. CKLW
dson, Alta. CFRN-TV-2 12			Wingham, Ont. CKNX-TV
liot Lake, Ont. CKSO.TV.1 3		(R	B
nderby, B.C. CFEN-TV-1 5		Saint John, N.B. CHSJ.TV	
stcourt, Que. CJES-TV.1 70	Mont Tremblant, Que. CBFT-1 11	Salmon Arm, B.C. CHBC.TV. 4	Whipeg, Man. CJAY-TV
Ikland, B.C. CFWS-TV-1	Montreal, Que. CBFT	Saskatoon, Sask. CFQC.TV	
Flon, Man. CBWBT 10*	Montreal, Que. CBMT	Sault Ste. Marie, Ont. CJIC-TV	Yarmouth, N.S. CBHT-3
warren, Man. CKX-TV-1 11	Montreal, Que. CFCF-TV 12	Savona, B.C. CFCR-TV-7	
pe, P.Q. CHAU.TV-6 10	Montreal, Que. CFTM-TV 10,	Senneterre, P.Q. CKRN-TV-I	

U. S., Puerto Rico, and Canadian FM Stereo Stations

Location

ALABAMA

Birmingham	WCTR.FM
Huntsville WAHR	
Montgomery	WAJM-FM
	WFMI-FM
ALASKA	
Anchorage	$\begin{aligned} & \text { KBYR-FM } \\ & \text { KNIK-FM } \end{aligned}$
ARJZONA	
Phoenix	KEPI
Sun City Tucson	KTPM KSOM

ARKANSAS
EI Dorado

KELD.WM
KRIL-FM

CALIFORNIA

Bakersfield	KIFM
Beverly Hills	KCBH
Coachella	KCHQ.FM
Fremont	KHY
Fresno	KCIB
Garden Grove	KXQR
Long Beach	KGGK
Los Angeles	KNOB
	KFAC.FM
	KFMU
	KMLA
	KPOL.FM
	KRHM
Monterey	KHFR
Palm Springs	KDES.FM
Riverside	KDUO
Sacramento	KHIQ
San Diego	KSFM
	KBBW
	KFMX

C.L. Locafion
C.L.

KGB.FM KLRO KPRI KAFE KBRG
KFOG KFOG
KMPX KMPX
KSFR KXKX KEEN-FM KVEC.FM KGUD.FM KMUZ KEYM KHOM KUDU-FM KWME

COLORADO

Colorado Springs Manitou Springs KLIR-FM

KLST KFML-FM

CONNECTICUT

Brookfield	WGHF
Hartford	WTIC.FM
Meriden	WBMI

DELAWARE

Wilmington	WDEL.FM
WISTRICT OF COLUMBIA	
Washington	WASH
FLORIDA	
WGMS-FM	
Clearwater	WTAN.FM

Location

Cocoa Beach Firal Gables Miami $\underset{\substack{\text { Miami Beach } \\ \text { Orlando }}}{ }$ Oriando Palm Beach Pensacola St. Petersbur
Sarasota

GEORGIA

Athens	WGAU-FM
Atlanta	WKLS
	WLTA-FM
Columbus	WSB-FM
	WRBL-FM

Columbus WRBL-FM
HAWAII
Honolulu
KAIM-FM
KPOI-FM
IDAHO
Boise
Boise KBOI-FM

ILLINOIS

Bloomington
Champaign
Chicago

Decatur
Elmwood Park
Joliet
Matoon Quiney
Rock Island

INDIANA

Columbia
WRKT-FM WVCG-FM WFLM WMJR WWPB WHOO-FM WWOS WPEX-FM WYAK

GAU-FM
LTA-FM
c.L.

Location	C.L.
Evansville	WIKY-FM
Greenfleld	WSMJ
Indianapolis	WFMS
Richmond	WKBV-FM
South Bend	WNDU-FM
Terre Haute	WVTS
IOWA	
Ames Cedar Rapids	WO1-FM KHAK-FM
Des Moines	WMM
Sioux City	KDVR
Waterloo	KXEL.FM
KANSAS	
Kansas City	KCJC
Lawrence	KANU
Wichita	KCMB-FM
	KWBB-FM
KENTUCKY	
Lexington Owensboro	WVLK-FM WSTO

LOUISIANA

$\begin{array}{ll}\text { Monroe } & \text { KMLB-FM } \\ \text { New Orleans } & W W M T\end{array}$
MAINE
Caribou WFST-FM

MARYLAND

| Bethesda |
| :--- | :--- |
| (Washington, D.C.) WHFS |
| WJMD |

Towson	
(Baltimore)	WAQE-FM

MASSACHUSETTS

Boston

World-Wide Short-Wave Stations

The World-Wide Short Wave Stations section of White's Radio Log is, as its name implies, a log, that lists stations actually monitored by listeners in the United States, Canada and overseas. It is not intended to be a listing of all shortwave transmitters licensed as such listings contain numerous inactive transmitters, and low powered stations which are rarely heard by DX'ers. The stations listed here, therefore, are those most often reported and consistently heard during the past few months. Many have been monitored by DX Central the official Radio-TV Experimenter monitoring post in New York City.

Because of the fact that this log represents
actual monitoring reports rather than data taken from published program schedules received from the stations, you may find that frequencies (and operating times) given here differ from official listings. This is because foreign short-wave stations frequently operate several kilocycles away from their assigned (and announced) frequencies. In addition, the schedules of these stations are often changed and the changes are not published in the schedules until many months later. We feel that the type of log which White's Radio Log is presenting represents a very realistic picture of the current status of short-wave broadcasting, and is something which cannot be obtained elsewhere.

For the DX'er. If you care to roam the bands for DX, we present here some information which will be of invaluable use to you in tracking down DX stations.

Although the current radio propagation conditions have made the high frequency bands (11 and 13 meter bands) relatively poor for DX'ers, the other bands are generally good during certain periods of the year. As a general rule, the following bands are "hot for DX" during the times indicated:

60 -meter band $=$ Winter nights.
49 -meter band $=$ Winter nights.
41 -meter band $=$ Winter nights.
31 -meter band=Nights, all year.
25 -meter band=Nights, all year.
19 -meter band=Days all year, and Summer nights.
16 -meter band=Days, all year, and Summer nights.
13 -meter band $=$ Days, all year.
11 -meter band=Days, all year.
In our listings, a station or frequency marked with an asterisk (*) indicates a nonbroadcast station or frequency. This might include aeronautical, maritime, military, or other type of transmission, either in regular AM or single sideband (SSB). In instances where many non-broadcast stations use the same frequency, we have given you a clue as to the type of stations to be found there, rather than pin down only one station.

The biggest thing in international broadcasting these days are the so-called "pirate" (unlicensed) broadcasting ships which are popping up all over western Europe. Last issue we gave you a run down on the current status of them, but now, only two months later, there are many more on the air-and these bootleg stations have added a further audacity to their operations, they are sending out QSL cards! Since some U.S. and Canadian listeners have reported hearing these stations, and since information on their operation does not appear in any "official" listings of radio stations, we have contacted our pirate broadcasting authority, Tom Kneitel, K3FLL/WB2AAI, for further details. Here's what he has for us this month:

Radio Caroline, reported in our Decem-ber-January issue, now QSL's with a black
and white card showing a picture of a bell. Their new address is P.O. Box 3, Ramsey, Isle of Man, England.

Radio City, is the new name for Radio Sutch (see December-January R-TVE). Operating on $1529 \mathrm{kc} / \mathrm{s}$ from 5 AM to 1 PM (EST), they will soon increase power to 2,000 watts from their present 560 watts. They announce, "Britain's First Teenage Radio Station."

Radio Invicta, "The Voice of Kent," operates 1 AM to 1 PM (EST) on $980 \mathrm{kc} / \mathrm{s}$. The address for QSL's is: 16 East Cliff Gardens, Folkestone, Kent, England. They play non-teenage music. This station was originally known as "GBLN, Radio GB, London," and was heard as early as April, 1962.

Radio North Sea, or Radio Nordzee, is broadcasting to Holland from a fixed platform in the North Sea. They tested on 1070, 1475 and $1485 \mathrm{kc} / \mathrm{s}$ as "Your Station From The Sea;" they have now settled down on $1400 \mathrm{kc} / \mathrm{s}$ with 1,000 watts on the following schedule: 4 AM to 6 AM (EST) and 11 AM to 3 PM (EST). They are expected to open a TV station soon.

Radio Albatross, a converted minesweeper, soon to start 18 hours of broadcasting daily to East Anglia, England.

Radio Lambay, another new one, will be anchored 5 miles off the coast of Dublin, Ireland.

Star Club Radio, A West German station, will have programs in both German and Dutch from their moorings near Heligoland.

An English Radio-TV Experimenter monitor, Rex H. Lawson of London, reports hearing "The Voice of The Sea," apparently another name for Radio North Sea. Their broadcast signed off with these cryptic words: "This broadcast is for our most constant listener, Peter. Our mutual friend Long John still has 3 legs and 2 arms, and tomorrow he will be making progress on shore. Now this is the Voice of The Sea closing down forever, to arise tomorrow, like Venus, out of the sea in a different language. Goodnight. Bon Soir. Guten Abend."

Still the most mysterious station around is the so-called "Kiss Me Honey" station, which does nothing more than play the same popular song over-and-over again. It consists of a woman, accompanied by a flute, singing "Kiss Me Honey." Sometimes the recording is played at double speed, and there are never any announcements. Reported by many U.S. and Canadian monitors on $11695 \mathrm{kc} / \mathrm{s}$, the station suffers from heavy
jamming at times and has been heard most recently around 1:30 to 2 PM (EST), also 8:30 to 9:45 AM (EST). There is a possibility that "Kiss Me Honey" may itself be a jamming station attempting to silence "Radio Peyk-e Iran" (Radio Free Iran) a bootleg political agitator probably located in Bulgaria. "Radio Peyk-e Iran" and "Kiss Me Honey" operate on the same frequency. "KMH" has also been heard on "Peyk-e" $9555 \mathrm{kc} / \mathrm{s}$ channel which seems to be more than just a coincidence. Tom Kneitel, who supplied this data, reports good signals from "KMH" and says that most listeners should be able to copy this interesting station without much difficulty.

Monitor E. Panum, Vancouver, B.C., reports hearing standard broadcast station 2CY in Canberra, N.S.W., Australia, on $850 \mathrm{kc} / \mathrm{s}$. The 10,000 watter was heard from 6 AM to 6:16 AM (EST) last August 17th. It was running an S-3. Nice going! That's a long haul on the broadcast band.

Let Us Know. Listeners are invited to submit their loggings to us for publication in the Shortwave section of White's Radio Log. Be sure to include the following information for each station you report: approximate frequency, callsign and/or station name, city and country, and time heard in Eastern Standard Time, 24 hour clock. Address your reports to: DX CENTRAL, White's Radio Log, c/o Radio-TV Experimenter, 505 Park Avenue, New York, N. Y. 10022, U.S.A.

Time To Listen. All times shown in White's Radio Log are in the 24 hour EST clock system. For example, 0800 is 8:00 AM EST, 1200 is noon EST, 1800 is 6 PM EST, and so on. For conversion to other time zones, subtract 1 hour for CST (0800 EST is 7 AM CST), 2 hours for MST, 3 hours for PST.

The following abbreviations are used in our listings: BC-Broadcasting Company, Corporation, or System; E-Emissora; RRadio or Radiodiffusion; V--Voice or Voz.

TNX. We are indebted to the following DX'ers who added their loggings to those of

DX CENTRAL, the official Radio-TV Experimenter monitoring station in New York City, to bring you this month's listings:
Donald Burns, Rego Park, N. Y.
Larry Bruegl, Park Falls. Wisc.
Phil Zucchi, Manomet, Mass.
Glenn R. Wyant, St. Catherines, Ont.
John Paulsen, Selma, Ala.
Tom Kneitel, New York, N. Y.
John Janecek, Lincoln, Nebr.
J. J. Graulich, New Castle, Del.

Charles Purdy, Jr., Millis, Mass.
Bill Grammage, Waco, Tex.
David White, Cadiz, Ky.
C. M. Carlson, San Marcos. Calif.

Rich Roth, Buzzards Bay, Mass.
W. Wandrei. Burnaby, B. C.

John M. McLeod Vancouver, B. C.
Ken Dubar, Wallingford, Conn.
unsigned, Narberth, Pa.
Larry Cotarici, Chicago. Ill.
Dan Bennett. Serafina. N. Mex.
Barry Firth, Lakeland, Fla.
Bruce Pomeroy, Phoenix, Ariz.
John Swain. Caneseraga. N. Y.
Stuart Sood, Greensboro, N. C.
Ronald Bedford, Canton, Ohio
George Derringer, Newburgh, N. Y.
Jerry Van Vactor. Spearfish, S. D.
Lee Rand, Old Town, Me.
Dennis Letendre, N. Miami, Fla.
Gerardo Brown, Jr., Oneonta. N. Y.
Julian M. Siemkiewicz. Brooklyn, N. Y.
Paul Stefany, Rockaway, N. J.
Bruce Kirkpatrick, Topeka. Kans.
Joseph Falcone, Philadelphia, Pa.
William Campbell. Canandaigua, N. Y.
John Sowers, Hightstown, N. J.
Robert Leipow, Brooklyn, N. Y.
Jack Kaplan, Teaneck, N. J.
Richard Tygrest, Hopewell. Va.
Dan Parker, Pocatello, Idaho
Barry Cobb, Cincinnati, Ohio
Philip Jones, Whittier, Calif.
Carleton May, Westminster. Mass.
David Pyatt, Indianapolis. Ind.
John Hanzlik, Omaha. Nebr.
Allen Mattis. Stone Lake, Wisc. Douglas Strande, Northwood. N. D. Bruce Molter. Maplewood. Mo. Tom Mace, Vernon, B. C. Frank Brandon, Schuylerville. N. Y. Herb Fredmon, Jamaica, N. Y. Gene Whitehurst. Hallettsville, Tex. Chuck McClure, Bethany, Okla. Marion C. Bue, Seattle. Wash. John Hasse. Vermillion. S. D.
Terry McGlone, Waukesha, Wisc.
Steve Shimko, Baltimore, Md.
Albert Rosenberg. New Castle, Del.

Freq.	Call	Name	Location	EST
2182	-	(Marine Emerg.)*	various ship \& land	
2390	ZYV71	R. Mundo Melhor	Governador, Braz.	1942
2425	-	S. Rhodesia BC	Gwelo, S. Rhodesia	2300
2460	-	Windw. Is. BC	St. Georges, Grenada	1500
2670	NMW	NMW (U,S.C.G.)*	Seattle, Wash.	0030
	NMY	NMY (U.S.C.G.)*	New York, N.Y.	0721
	-	U.S. Coast Guard*	various ship \& land	
2716	-	U.S. Navy*	various ship \& land	

Freq. Call	Name	
3215	VUD	Alt IndiaR.
3236	ZK6	R.Raratonga
3245	VL8BK	VL8BK
3250	-	R.Highveld
3264	-	R.Congo
$3280-$	Windw.Is. BC	

$\begin{array}{ll}\text { Location } & \text { EST } \\ \text { New Delhi, India } & 1215 \\ \text { Raratonga, } & \\ \text { Cook Is. } & 0145 \\ \text { Kerema, Papua } & 1500 \\ \text { Capetown, } & \\ \begin{array}{ll}\text { S. Africa }\end{array} & 0108 \\ \text { Srazzaville, Congo } & 2330 \\ \begin{array}{l}\text { St. Geprges, } \\ \text { Grenada }\end{array} & 1500\end{array}$

10-80 Receiver
 Continued from page 60

Coil L3 is wound from the same type of wire on a $1 / 4$-inch diameter resistor form. There are a total of 75 turns scramble wound on this winding.

Component Mounting and Wiring. Mount all of the variable controls and tuning condensers on the front panel of the cabinet. The aluminum open-end chassis holds most of the larger parts, such as the tubes and sockets, and transformers. The mounting and layout of parts are shown in the chassis photograph.

Follow the schematic diagram and chassis photograph in wiring the chassis. Conventional wiring procedures should be used: mainly, keep leads short as possible, and twist the 6.3 -volt filament leads. It would prove easiest to use insulated hookup wire throughout the chassis. Component leads need only be spaghetti-insulated when there is a possibility of their shorting to the chassis.

After the short-wave receiver has been completely wired, check the wiring carefully before plugging into an AC outlet and turning the switch on.

Initial Adjustments. The two vacuum tubes and pilot lamp light when power is on. Now turn the volume control to maximum
at which point audio hum will be heard. Adjust the regeneration control until the receiver goes into oscillation. Switch to band three and turn the large tuning condenser; whistles will be heard over the band. Tune in a whistle or beep and reduce the regeneration control until the signal is audible. It is noted that cw code signals are best identified when the control is past the spot of regeneration. This little shortwave receiver has quite a lot of volume for room listening but if you desire quiet listening, just plug in a pair of earphones.

Antenna. A long antenna of seventy five feet of the inverted L variety works quite well with the 10-80 receiver. The higher the antenna the better. A inverted I antenna is simply a length of wire laying horizontally with the ground with an insulator at each end. A shorter antenna of 25 feet will work well enough for local use.
Trouble? If the receiver does not work properly, check voltages on the plate of each tube and follow the usual troubleshooting procedures. A quick way to check the audio circuit is to place a screwdriver on the grid, pin 9, of the 6D10; a low audio hum should be noticed.

Finally, check each band for operation and smooth regeneration control. Use tuning condenser C5 to spread the signals across the dial. Short-wave or ham fan, you'll enjoy listening to this homemade receiver. You'll find the dial loaded with stations.

Darkroom Thermometer

Continued from page 62
point voltage of battery B2) by the leakage current Iceo (in amperes) previously measured at $85^{\circ} \mathrm{F}$. R1 will be somewhere between 5000 and 20,000 ohms.

Mount Q1 on the end of a three foot length of rubber lamp cord. Clip off the base lead and push the C and E leads, cut to $3 / 4$ inch length, into the stranded wire at the end of the cord. Label the wires at the other end accordingly. Using carbon tetrachloride, clean the transistor and the cord end to remove traces of grease. Apply a flexible epoxy cement, such as DURO E-POX-E, in several layers to form a waterproof encapsulation around the transistor. Allow 24 hours curing time. To check the encapsulation for water leakage, place the element in a cup of water and measure the resistance between the water and each lead of the transistor. The resistance should be greater than 25 megohms.

Calibration. To calibrate the thermometer, use an accurate mercury or alcohol thermometer and the water bath as setup previously. Omit the test tube and immerse the transistor and thermometer at least two inches into the water. Start with a water bath temperature of $90^{\circ} \mathrm{F}$ and allow it to cool gradually. When the temperature drops to $85^{\circ} \mathrm{F}$, record the meter indication or mark a card attached to the meter face. Calibrate the scale at each degree from 70 to $85^{\circ} \mathrm{F}$.

Next, cool the water to $45^{\circ} \mathrm{F}$ using crushed ice cubes. Stir the water thoroughly and remove excess ice, if present. Calibrate in five degree intervals from $50^{\circ} \mathrm{F}$ to $60^{\circ} \mathrm{F}$ and two degree intervals from $60^{\circ} \mathrm{F}$ to $70^{\circ} \mathrm{F}$ as the water warms up slowly to room temperature.

The simplest method of providing a meter scale is to attach a card to the outer face of the meter. Masking tape was used to attach the card. Use of cements may damage plastic faced meters. If done with care, the original meter dial plate may be removed, painted white on the reverse side, and marked with a temperature scale.

Application. Immerse at least two inches of the cord end into the liquid solution when checking the temperature. Do not insert the element into liquids above $176^{\circ} \mathrm{F}$ as permanent damage or decalibration may result to the germanium transistor. When battery voltages, with S1 closed, drop to one volt, replace the battery.

New World Under The Sea

Continued from page 46
sengers through the oceans, help salvage lost cargoes, rescue crews from sunken submarines, as well as study and mine the oceans.

Turtle's Dr. Fiedler is convinced man has long appreciated the ocean's vast wealth but has simply lacked the tools to operate at watery depths, and he feels, "Settlements underneath the sea are not improbable." But we must first map these regions.

In that he is joined by a number of top scientists. Dr. Athelstan Spilhaus, Dean of the Institute of Technology at the University of Minnesota thinks we may ultimately sce floating factories, and future ocean cities.

Westinghouse engineers design a nuclear reactor to power just such a city. Their draw-ing-board reactor is planned with no moving parts to function at least 18 months without maintenance and power an underseas city of 6,000 people. Westinghouse Director Richard C. Cunningham says, "If man could establish an undersea community as a base for geological studies or mining operations, it would be comparable to discovering a new world."

New Sea World: Whether we will eventually live, mine, work under the seas can only be scanned in the future. But the modern day explosion of electronic development that prompts these visionary speculations is very real today and forecasts a "new world" of knowledge tomorrow.

Senator Warren G. Magnuson, Chairman of the Senate Commerce Committee and Senate champion of an inner-space NASA calls the ocean an "ever-changing, demanding environment." To understand it, he says, "to exploit its vast living and mineral resource.;, to eventually master the seas, scientists and engineers must have tools."

These are the tools emerging from our nation's electronic and scientific laboratories today.

Transistor Checker

Continued from page 50

The Picture. The typical oscilloscope wave-forms in the illustration are the patterns most usually obtained when checking transistors. With a vertical gain of .1 volt per division, each division on the scope face will be 1 milliampere; at 1 volt per division, each division will equal 10 milliamps. Note that the oscilloscope will show the PNP curve from left to right, NPN curve right to left.

The first curve indicates the characteristics of a good transistor. The slopes of the current rise and constant current portions of the curve, as well as the nature of the breakover point, give indications of the condition of the transistor. The amount of slope of the nearly horizontal section is an indication of leakage. But power transistors have some leakage and oscilloscope gain affects the final curve so a better indication of the transistor's condition can be obtained by observing how sharp a break occurs in the curve. The second curve illustrates a gradual or poor break which base-collector leakage and a transistor of questionable quality.

The third curve illustrates break down where the voltage capability has been exceeded. This pattern sometimes occurs normally and without damage to very low voltage transistors in the 9 -volt peak circuit. The 100 -ohm resistor prevents excessive collector current and heating. If the breakdown results in a steeply rising line for a transistor rated at more than the breakdown voltage point, it is obvious the transistor is defective. The fourth curve showing no breakover characteristic is typical of a defective transistor. If the curve approaches the vertical, it is apparent that large collector currents are flowing with little applied voltage and the transistor is shorted. If the curve approaches a horizontal line, there is no variation of collector current and the transistor is open.

Further Uses. By recording corresponding base current and collector current for various transistors, you can match transistors for balanced pairs. Just compare the values you've recorded, pair off the closest, and you've saved a purchase.

The transistor characteristic checker can also be used to check diodes. The base supply and the microammeter form the basis of an ohmmeter which checks diodes by comparing forward to back currents.

Oscilloscope
 Continued from page 100

The scope is connected across the amplifier output to observe the output signal. The waveform at the various stages can be observed by using a probe as suggested earlier.

The frequency response of the amplifier can be determined by varying the frequency of the signal generator and noting the change in amplitude of the waveform on the scope screen. The dynamic characteristics of the amplifier can be noted by varying the signal generator output level. When the signal reaches a certain level, the amplifier output may not increase and distortion of the waveform, resulting from overloading, can ive noted on the scope screen.

By feeding a square wave signal into the amplifier, you can note whether the output signal is square or distorted because of phase shift and poor high frequency response in the amplifier.

Only a few of the uses of a scope can be covered here. There are excellent books on the subject. A scope can be used for measuring frequency, modulation level and symmetry and many, many other tests. Here, we haven't even touched on the use of the horizontal input of a scope. This will be discussed in future articles.
Other scope adjustments, not explained here, such as sync, and the use of 60 -cycle and external sync signals are covered in instruction books furnished with scopes.

Picking a Scope. There are dozens of scopes on the market ranging in price from around $\$ 70$ for a kit to more than $\$ 1000$ for a lab-type instrument. The lowest cost scopes will usually satisfy the needs of beginner experimenters. Engineers and color TV servicemén usually insist on a more sophisticated scope with a frequency response extending from $D C$ to 4 mc or higher. Most scopes are not designed to work with DC, but for some purposes the ability to pass $D C$ is essential.

Scopes are available in several brands at radio parts stores and mail order houses. Used and obsolete military scopes are also available from surplus dealers but in many cases you are much better off sticking to equipment designed for you. Regardless of whether you buy a new or used scope, or get a kit and build it yourself, you will find it the most useful device in your shop for learning about electronics.

Lab Check-AR's XA Turntable
 Continued from page 87

by various stylus pressures also could not be heard.

Hum pickup from the motors is non-existent, which we contribute to some brilliant thinking (simple as it may appear). AR has placed the motors on the longest diagonal from the pickup. When tested with an Shure M44-5 cartridge there was absolutely no hum pickup from the motors, it couldn't be heard or measured. Just to double check we swung the arm to the opposite side of the turntable-over the motors-and sure enough there was the usual motor hum. (The next time you hear a debate on how to reduce motor hum pickup just remember how AR avoids the whole problem. Of course, the XA's non-ferrous platter and Mumetal motor shields are great helps.)

Tone Arm. The supplied arm is a good example of thoughtful "consumer thinking"; by this we mean that it's a pleasure to find a manufacturer that doesn't assume every hi-fi enthusiast is a natural born mechanic. Though mounted in place with all leads connected, the arm is supplied unattached to the pivot post (to avoid shipping damage). All the user has to do is thread the arm onto the pivot post (or spindle as AR calls it). Now did you ever try turning a section of polished rod; a first rate pain in the neck. But not on the XA; the pivot post is milled for easy gripping. (Sure, milling isn't a big deal but it's in keeping with the spirit of "consumer thinking.")

The cartridge mounting is also well thought out. If you ever unpacked a cartridge you know about the envelope filled with mounting parts, each one smaller than the next; with the choice of parts left up to the consumer. Not so with AR. AR supplies all the required parts, each one so different from the other you can't make a mistake. They also supply a reference chart for virtually all hi-fii cartridges which details the exact screws and spacers to be used. And AR even supplies an "easy grip" screwdriver which fits the cartridge and arm adjustment screws (this item alone is worth a buck).

Adjustments. When you're all set to make the final arm adjustments AR again comes to the rescue with "consumer thinking." You all know about overhang-the distance the needle must project past the turntable spindle
for proper tracking. Well, on the XA you don't guess, or break a diamond needle trying to jam a ruler under the cartridge. AR supplies a gauge which fits over the spindle; and you simply lengthen the arm until the needle fits into a dimple on the end of the gauge.

Stylus pressure? The turntable comes supplied with one of the best stylus pressure gauges we've seen (AR also sells this item for a dollar). Place the needle in the dimple on one end of the gauge, place the correct gram weights on the other end of the scale, and simply slide the arm's counterweight back and forth until the scale is balanced. Again, you don't have to be a mechanic to get the pressure adjusted right the first time. You don't have to lift a gauge "to the exact height of the record," you don't have to "orient the gauge so the stylus is centered." You can't make a mistake with the AR gauge.

Finally, there is the user adjustment for "rate of fall." By simply rotating the arm pivot the arm is adjusted so it lowers to the record slowly. Should you pick the arm up and suddenly have it slip from your grasp the arm will not slam into the record; rather, it lowers slowly by itself. AND, the arm is designed so the damping is released just before the arm reaches the record, the stylus does not have to drag a damping load in addition to the arm.

If all the foregoing adjustments appear to be formidable, forget about them. Total time from opening the packing case, through reading the instructions, to final adjustment is less than 20 minutes.

Keeping in the Groove. Finally, we must call your attention to the XA's stability. Both the turntable and arm are attached to a separate frame which is floated to the cabinet and deck; the arm is not attached to the deck. If the motor is jarred the arm moves with the motor and vice-versa. Virtually no normal movement of the turntable's base or the cabinet on which it is mounted will cause the needle to jump out of the groove, even at $3 / 4$ gram stylus pressure. It is even possible to strike the top of the base with a hammer sharply and hear no effect on playback.

The Acid Test. Just to give the suspension system the severest test, the turntable was placed directly on the speaker cabinet with the volume at normal listening level. Not only was there no acoustic feedback, there was no discernible detrimental effect on the sound.

Heath-kit AR-13A
Continued from page 86

sidebands. There is an AFC On-off switch. The mono sound is excellent and easily compliments the audio amplifier: low noise level, good sensitivity, and clean reception even on high level modulation. The stereo reception is superb, with "studio" separation that can be user adjusted at any time. An interesting convenience is a separate stereo reverse switch which does not affect the amplifier's L-R connection. Also, the FM stereo balance is independent of the amplifier balance. Both can be set for optimum balance eliminating the possible need to change balance when switching from phono to FM stereo.

The stereo indicator is a full-time lamp. Whether the FM selector is set for Mono or Stereo the lamp lights when the station transmits stereo. This is a decided convenience if the stations in your locality broadcast stereo part-time. Should you be listening to a mono program and not hear the announcement that the station is switching to stereo, a glance at the front panel will tell the storyif the lamp is lit stereo is on.

We found only two complaints with the AR-13A, both concerning FM reception. The first is the tuning meter. Contrary to the familiar meter, a weak signal-one that would be noisy-indicates about half-scale instead of the usual bottom scale indication. Virtually any usable signal indicates full scale. It's a minor inconvenience that some audiophiles will object to. Next, the localdistance reception switch, instead of changing receiver sensitivity, disconnects the outdoor antenna and connects a line-cord antenna. Heath suggest that the local connec-tion-the line cord antenna-be used for strong stations. This causes multipath pickup making stereo listening almost impossible in many homes. If local stations are so strong they overload the tuner the best thing to do is to place an adjustable attenuator between the outdoor antenna's transmission line and the receiver. In all honesty, these two exceptions will be overlooked by most audiophiles since they will tune by ear and always use external dipole antennas.

Comparing the AR-13A on a feature versus dollar basis, one cannot help but admit that the receiver is a rock-bottom dollar buy, about the best you can hope for in the solid-state market place.

Ham Receiver Goes CB

Though the Heath SB-300 is known as an 80 through 10 meter amateur receiver, many hams and CB'ers overlook the fact that is can also be used as a darn good CB receiver. Not only do you get the option of receiving conventional AM CB signals, but you get top quality sideband reception to boot.

Unlike most receiver conversions-which are best left undone-modifying the SB- 300 takes but a few minutes and in no way affects its normal amateur performance. In fact it's a good bet for the CB'er studying for a ham ticket; only one investment buys hot performance for both $C B$ and ham radio.

Easy Conversion. The modification is as easy as can be-all that is involved is changing two components. Since the portion of the 10 -meter band above 29.5 mc . is rarely used by hams, this band switch position is converted to CB by simply pulling out the original 29.5 mc . crystal and inserting a CB crystal.

The final step is to retune the 29.5 mc . heterodyne oscillator coil (L19). Since the slug of L1 won't pull down to the Citizens' Band, its tuning capacitor, C215, must be increased from 36 mmf . to 56 mmf .-use an Arco Elemenco type DM-15 silver mica capacitor available from Allied Radio. Capacitor C215 is easy to get at and there should be no difficulty in affecting the change. Follow the alignment instructions given in the SB-300 instruction manual and peak for maximum output at the test jack.

The CB crystal is available from Texas Crystals, Crystal Drive, Fort Myers, Florida. Specify a $.005 \%$ third overtone type in an HC6/U holder. Crystal frequency is 35.795 mc. Price is $\$ 4.20$ postpaid. This crystal will provide a CB band of 26.9 to 27.4 mc .
-Herbert Friedman

Replacing capacitor C215 proves easy enough.
 To be included in our next RADIO-TV EXPERIMENTER, copy must be in our New York Office by January 10th. Address orders to C. D. Wilson, Manager, Classified Advertising, RADIO-TV EXPERIMENTER, 505 Park Ave., New York, N. Y. 10022

AUTHOR'S SERVICE

PUBLISH your book! Join our successful authors; publicity advertising promotion. beautiful books. All subjects invited. Send for free manuscript report and detailed booklet. Carlton Press, Dept. SMH, 84 Fifth Avenue, New York 11

BOATS, MOTORS \& MARINE SUPPLIES

BOAT Kits! Factory molded fiberglas or pre-assembled plywood. 50 models. 12 ' 9200 Access Road, Minneapolis 31 , Minn.

FULL size, cut-to-shape boat patterns blueprints. Send 504 for big New illustrated "Build a Boat" catalog includes Fishing Boats, Garvies, Crulsers, Catamarans, Houseboats-Outboards. Inboards, Sailboats- $71 / 2$ to 38^{\prime}. "How to Build a Boat' ' booklet $\$ 2.50$. Cleveland Boat Blueprint Co., Box 18250. Cleveland, Ohio.

PRAM Kits World famous 8 ft. "Sea Shell pram. Features the finest in design and materials. Rowing and sainng today to McNair Boats. Box 489, Port Washington. New York.

BOOKS \& PERIODICALS

BOOKS 2000 Subjects. Catalog 15t. Myers Book Service. Marquand, Mo.

CATALOG of all Science and Mechanics Craftprints. Send 254 to cover postage and handling to Craftprint Div., Science \& Mechanics, 505 Park Ave.. New York 22.

BUSINESS OPPORTUNITIES

I MAKE $\$ 40,000.00$ a Year by Mailorder. Helped others make money! Start with \$10.00-Free Proof. Torrey, Box 3566-T, Oklahoma City 6, Okla.

HIGH Weekly Earnings! Address-mail letter's featuring real merchandise. Get $\$ 10$ with every order-keep $\$ 8$ proft. supples chandising, Box 357 , Oceanside. New York.

PAWNBROKER. Be one. I'll teach you. PAWNBROKER. Be one. I'l teach you, Open pawnsh

DOZENS of ways to be your own boss of conduct a small business successfully. Send $\$ 4.50$ for your Six (6) Issue Subscription to Income Opportunities, 505 Park Ave. New York, N. Y. 10022.

BUY IT WHOLESALE

FREE Catalog-900 items-buy low-sell high-Ideal sidelines-Department Thirty, 100 North Greene Street, Baltimore. Md.

CAMERAS \& PHOTO SUPPLIES

AT lastl Build your own supersensitive light meter from complete kit with easy to follow instructions. Send $\$ 24.95$ to Kit Div., Science \& Mechanics, 505 Park Ave. New' York, N. Y. 10022. Money completely refunded if Kit returned within ten days for any reason.

CARTOONING. COMMERCIAL ART \& SIGN PAINTING

[^2]
COINS, CURRENCY \& TOKENS

UNCIRCULATED 1935 Pony Express Silver Commemorative Medal $\$ 1.00$. Coin Lists Free. Sayers, 1000 Unaka. Johnson City. Tennessee.

EARTHWORMS

BIG Money Raising Fishworms and Crickets. Free Literature. Carter Farm-O, Plains, Georgia

FIREARMS, AMMUNITION \&

 EQUIPMENTGUN Cabinets, Racks. Pistol Cabinets Finished or Unfinished. Plans. Kits Brochure 254. Munsey Planing Mill, Carmi. Illinois.

Make your classified ad payl This handbook tells how-with examples; included is a Credit Certificate worth $\$ 2.00$ to ward the cost of a classified ad in S \& M. For a copy of "How to Write a Classified Ad That Pulls," send $\$ 1.00$ to C. D. Wilson, Science \& Mechanics, 505 Park Ave., New York, N. Y. 10022.

FISHING TACKLE BAIT \& LURES
LURES and Spinners. Send 254 for sample and wholesale prices. Hofmelster P. O. Box 134, Belleville, Ill.

FLORIDA LAND

FLORIDA Water Wonderland: Home sites, Cottagesites, Mobilesites, Established area. $\$ 390.00$ full price, $\$ 5.00$ month Swimming, fishing, boating. Write Lake Weir, Box' $38-E S$, Silver Springs, Florida AD 6-1070-(F-1)

FOR INVENTORS

PATENT Searches-48 hour airmail service. $\$ 6.00$, including nearest patent copies. More than 200 registered patent attorneys have used my service. Free Ann Hastings. Patent Searcher, P. O. Box 176, Washington 4, D. C

HYPNOTISM

NEW concept teaches you self-hypnosis quickly! Free literature. Smith-McKinley. Box 3038, San Bernardino. Calif.
SLEEP-Learning-Hypnotism! Strange catalog free! Autosuggestion. Box $24-\mathrm{TV}$, Olympia, Washington.

IMPORT-EXPORT

FREE Flashing Bulb included. Emergency Lantern $\$ 1.00$ Less Batteries. Martin, Box 8967, Dallas, Texas 75216.

INVENTIONS WANTED

INVENTORS! We will develop, sell your idea or invention patented or unpatented. Our national manufacturer-clients are urgently seeking new items for highest outright cash sale or royalties. Financial as sistance available. 10 years proven performance. For iree information, write Dept. 7. Wall Street Invention Brokerage 79 Wall Street, New York 5, N. Y.

MONEYMAKING OPPORTUNITIES

CASH earned at home. No expertence needed. Flannery, 105 Knollwoad Drive, Cherry Hill. N. J. 08034.

PATENT SERVICE

PATENT Searches. $\$ 6.00$! For free "In vention Record" and "Important Information Inventors Need." write Miss Haykard. 1029-D Vermont, Washington 5, D. C.
HANDBOOK For Inventors. A guice for obtaining protection and selling your in Box 6757 , Portland. Oregon 97266 .

PETS-DOGS, BIRDS, RABBITS, ETC.
MAKE big money raising rabbits for us Information 25c. Keeney Brothers, New Freedom, Penna

RADIO \& TELEVISION

$7^{\prime \prime}$ TV test tube- $\$ 6.99$. Tubes-6146$\$ 2.95$; 6211 (12AD7 equiv.) 39 é. 3 for $\$ 1.00$ Germanium diodes, tested, equiv. IN34, rectiffers, 750 MA- 1000 piv 75 . Tranrectiners, $\mathrm{sistors}, \mathrm{tubes}, \mathrm{resistors}, \mathrm{condensers}, \mathrm{etc}$. bargain priced. Free catalog. Arcturus Electronics. Dept. RTV, 502-22nd St., Union City, N. J. 07087 .

CONVERT any television to supersensitive, big-screen oscilloscope. No electronic experience necessary. Only minor changes required. Illustrated plans $\$ 2.00$. Relco A-35, Box 10563, Houston 18, Texas.
FREE Electronics Catalog. Tremeridous bargams. Electrolabs. Dept. C-50t-DJ, Hewlett, New York 11557 .
SUPER Crystal Set Plans 304. Charley's Shop, Box lir, Skidway Lake, Michigan Shop,
48756.
TV CAMERAS, transmitters, converters. etc. Lowest factory prices. Catalog 104 Vanguard, 190-48-99th Ave., Hollis, If. Y 11423.

McGEE Radio Company, Big 1965-176 Page Catalog sent Free. America's Best Page Catalog sent Free. America s Bes tronic Parts. 1901 McGee St., Dept. ITV, tronic Parts. 1901

SPECIAL SERVICES

WHERE to get $\$ 500.00$ Loan-Interest Free. $\$ 1.00$. Beidleman Enterprises, Box 144-SM. Allentown, Penna.

STAMP COLLECTING

50 DIFFERENT Stamps. Free with penny approvals. Suz. 29761 MacInlyre, Livonia, Mich.

TREASURE FINDERS-PROSPECTING

 EQUIPMENTNEW supersensitive transistor locators detect buried gold, silver. coins. Fits, assembled models. $\$ 19.95$ up. Underwater models available, Free catalog, RelcoA30, Box 10563, Houston 18, Texas.

Lab Check-E-V Coronet

Continued from page 71
finished you don't have just a cabinet. E-V has allowed for expansion and you can upgrade the speaker system without having a full set of power tools. The front panel is precut for a tweeter and a cover is supplied for the cutout until you get the tweeter. Even a little thing like the hole for the tweeter level control isn't left to chance. The hole is predrilled in the rear panel and a snapbutton is provided as a cover for the hole.

Price Is Right. The cost of a Coronet system depends on your choice of speaker. The lowest cost unit, the Coronet I, sells for $\$ 37.60$ (the so-called user net) and utilizes E-V's MC8 "Michigan" speaker. While the MC8 doesn't give outstanding booming bass and shimmering highs it has a well balanced (50-13,000 cycles), clean sound-notably clean for the price. It is the opinion of many who have used the Coronet I (including us) that the sound quality is comparable to systems costing two or three times as much.

For a few bucks more, $\$ 41.60$, you can get the Coronet II which uses the LS8 "Wolverine" speaker. The Wolverine's sound is similar to the MC8 with a little more sock in the bass.

At the top of the line are the Coronet III and IV selling for $\$ 49.60$ each-you pick 'em. The Coronet III sports E-V's SP8B loudspeaker. This little 8 -inch job is noted for its well balanced, notably clean and bright sound-frequency response 40 to 15,000 cps . The Coronet IV sports the Wolverine LT8 3-way loudspeaker-frequency response 45 to $18,000 \mathrm{cps}$. Both the III and IV are two of the few "bookshelf" speaker systems with the BIG SPEAKER sound.

Summing up. Regardless which Coronet you choose you're going to get more than your money's worth in sound and looks. We rate all models of the Coronet line a good audio buy for budget and medium-priced high fidelity systems. However, we must admit that the best buy in the line is the Coronet IV-the speaker system kit that offers the best dollar buy for top notch performance with minimum assembly time. No matter whether you are workshop master mechanic or "ten-thumb putterer," you should investigate the Coronet line. For more information, write to Electro-Voice Incorporated, Dept. LC-722, Buchanan, Michigan.

STATEMENT OF OHNERSHIP. MANAGEMENT AND CIRCL1.ATION (Act of October ․3. 196: : Sesetion 4369. Tille 39, United States Code) of Radio-TV Experimenter Magazine published bimonthy at $\overline{5} 0 \overline{3}$ Jark Ave. New York. N. Y. loote for October 1. 1064.

Location of known office of bublication is Shis lark Aye., New York N. Y. 1002\%. Location of the headquarters of General Business offices of the publisher is 505 l'ark Are., Sew York. N. Sal Bus in
Natmes and addresses of I'ublisher, Elitor and Hanaging Editor
 Editor. Julian Nienkiewicz, 505 lark Ase., New York, N. Y. 1002. Managing Editor, (Nome)
The owner is: (If owned by a torporation, its name and addrens bust be stated and also inmediately thereunder the names and addresses of stockholders owning or holding 1 percent or more of total anount of stuck. If not owned by a cortoration, the names and addresses of the individual owners be given. If owned by a barthership or wher unlncortwrated firm, its name and address, as well as that of parh indiridual must be giren.) Sy fiNCE \& MECHANITS PrBLALINO 'O., 505 1'ark Avenue, New York, N. 10022 ;
 10022: B. G. DAYIS, 50S lark dwe, Xrw York, N. Y. 1002e: JoE1, DAVIS, 505 l'ark Are., New York, N. Y. 10022
The known hondholders. morigagees, and other security holders owning or holding 1 percent or mure of total amount of bonds, mortgages or other securities are (If there are none, so statel: NoNE.
l'aragraphs 7 and 8 include, in cases where the stoekholder or security holder appear's upon the books of the company as truste or In any other Aduciary relation, the name of the person or corporation for whom such tartep is acting, also the statements in the two paragraphs show tha affiant's full knowledge and helief as to the circumstances and ronditions minder which stomkholters and security holder: who do not appear upon the hooks of the company as trustees, hold stock and securities in a capucity other than that of a bona the owner. Names and addresses of individuals who are stockholders of a corporation which itself is a storkholder or holder of bonds, mortgake's or other securities of the bublishing corporation have been inchuded in paragraphs i and 8 when the interests of such indiriduals arn equivalent to 1 percent or more of the total amount of the stock or serurities of the publishing corporation.
The arrage number of conies of tath issue durng preceding 12 months are: (A) Total number copies printel (nel press rum: 215.447: (B) laid dirculation: (1) T'f term subscribers by mail. aarrier delivery or by other means; 8.55 : (2) Sales through agents, 1pwadealers, or otherwise: R9.243; (1) Free distribution: fun: In Total number of copies distributed: 90,448 . The number of ropits ingle issule marest to tiliog date are: (A) Total number copita
 subur ribers by mail. "arrier delieres or by other means: 2, 50 ; (2) Sales through igents, newsdealers or othervise: 8.5 .000 : (C), rree dist ribution: 301 : (11 i Total number of copies divitributed: 68,071 . I rertify that the statements made by me above are correct and
complete.

BUILD, EXPERIMENT, EXPLORE, DISCOVER WITH NRI CUSTOM-DESIGNED TRAINING KITS

BUILD YOUR OWN

 PHONE/CODE TRANSMITTERThis is just one of seven training kits programmed into NRI's Complete Communications course. You get actual practice in building your own crystal-controlled, phone/code transmitter and putting it on the air. You experiment with modulation, "clamping" circuits, key filters, other aspects of commercial transmitter operation. Can be put on the air simply by attaching an antenna and complies with FCC regulations. As with all NRI training kits, you get the most modern features and parts.

BUILD ACTUAL ANALOG COMPUTER CIRCUITS

Industry, business offices, the govermment and military all need trained Electronics Technicians. NRI's Industrial Electronics course prepares you. You progress through 10 carefully designed training kits, topping off your practical experience phase of training by experimenting with feedback control systems, analog computers and digital computer elements. You actually solve problems on this analog computer you build yourself. This is the practical, fast way to a good paying, career position.

BUILD A CUSTOM-ENGINEERED TELEVISION RECEIVER

Want to earn $\$ 3$ to $\$ 5$ an hour in spare time? Want your own part. time or full-time business? In Ra-dio-TV Servicing you learn to install, maintain, service radios, TV sets, hi-fi and stereo, other home Electronics equipment. Irı your training are eight training kits, including this complete, modern, slim-line TV receiver. You build it yourself, become familiar with components and circuits, learn servicing procedures . . . and earn extra money as you train. National Radio Institute, Washington, D.C.

SEE OTHER SILIE

Join the Thousands Who Gained Success with NRI

"I am Frequency Coordinator for the Ilth Naval District. The course was priceloss." J. J. JENKINS. San Diego, Caiff.

"Many thanks to NRI. I hold FCC License, am master control ongineer with KXIB-TV."'R.L. WOOD, Fargo. N.D.
"I am a Senior Engineoring Aide. Without NRI I would still be work. ing in a factory at - lower standard of living.'" D. F.CON. RAD, Reseda, Calif.

FIRST CLASS PERMIT NO. 20-R

BUSINESS REPLY MAIL

no postage stamp necessary if mailed in the united states

postage will be paid by

NATIONAL RADIO INSTITUTE
3939 Wisconsin Avenue
Washington, D.C. 20016

GET FAST START WITH NEW

ACHIEVEMENT KIT
Delivered to your dooreverything you need to make a significant start in the Electronics field of your choice. An outstand. ing, logical way to introduce you to home-study training. It includes your first set of lesson texts and all the "classroom tools'" you need. No other school has anything like the new NRI Achievement Kit.

ELECTRONICS

 COMES ALIVE WITH NRI TRAINING KITSNothing is as effective as learning by doing . . . and NRI pioneered the "home lab" technique of training. NRI invites compari. son with training equip. ment offered by any other school. Begin NOW this exciting program of practical learning. Make the skills of the finest Electronic Technicians your own. Mail card below.

"BITE SIZE" TEXTS PROGRAM YOUR TRAINING
Certainly, lesson texts are necessary. NRI's pro. grammed texts are as simple, direct and well il. lustrated as 50 years of teaching experience can make them. They are carefully programmed with NRI training kits to make the things you read about come alive. You experience all the excitement of original discovery.

HOBBY? CAREER? MAIL CARD NOW TO NRI
Whatever your need whatever your education
there's an NRI training plan to fit your re. quirements. Choose from three major courses or select one of seven special courses in particular Electronics subjects. Check the postage-free card below, fill in and mail. National fadio Institute, Washingion, D.C.

DISCOVER THE EASE AND EXCITEMENT OF LEARNING ELECTRONICS THE NRI WAY

SEE OTHER SIDE

National Radio Institute, Electronics Div.
Washington, D.C. 20016
Please send me your catalog. I have checked the field(s) of most interest to me. (No salesman will call.)
\square TV-Radio Servicing
\square Basic Electronics
\square Industrial Electronics
\square Complete CommunicationsFCC License
Math for Electronics
\square Electronics for Automation
\square Aviation Communications
\square Marine Communications
\square Mobile Communications

PICK THE
TRAINING PLAN OF YOUR CHOICE AND MAIL CARD FOR FREE CATALOG LEADERSHIP IN ELECTRONICS TRAINING

[^0]: PARTS LIST
 B1-1.5-volt, D-size battery
 Cl_{1}, C2-50-50mfd, 150 WV , dual-section electrolytic capacitor (Lafayette Radio 32G0121 or equiv.)
 D1, D2--Silicon rectifiers, $750 \mathrm{ma}, 200 \mathrm{PIV}$ at $25^{\circ} \mathrm{C} ; 500 \mathrm{ma}, 200 \mathrm{PIV}$ at $90^{\circ} \mathrm{C}$ (Lafayette 19G4210 or equiv.)
 E1, E2, E3-Mueller Mini-gator clips and flexible insulators, 2 red and 1 black (Lafayette 32G3500 and 35G3527C, respectively)
 F1-Type 3AG standard Litrelfuse, 2 amp., and Buss HKP fuse mounting ILafayette 13G1015 and 13G6202, respectively)
 11 -Indicator lamp and assembly (Allied 7E992 and 7E510, respectively)
 J1, J2, J3, J4, J5—Insulated tip jacks, 3 red, 2 black (Lafayette 32G6432C)
 MI-Base current microammeter, $0-500$ ua (Olson ME 101 or equiv.)
 R1- 500,000 -ohm, linear taper potentiometer
 R2— 100 -ohm, $1 / 2$-walt resistor
 R3- $4,700-\mathrm{ohm}, 1 / 2$-watt resistor
 R4-47,000-ohm, $1 / 2$-watt resistor
 R5—680-ohm, $1 / 2$-watt resistor
 51-S.p.s.t. toggle switch
 52-3-gang, 6-pole, 5 position per pole, nonshorting rotary switch (Mallory 1335L or equiv.)
 53-D.p.d.t. toggle switch
 T1-Filament transformer, 6.3 v at 1 amp . (Lofayette 33G3702 or equiv.)
 T2-Filament transformer, 2.5v at 3 amp . (Allied 64G132 or equiv.)
 1 -Sloping panel cabinet, $8^{\prime \prime} \times 8^{\prime \prime} \times 8^{\prime \prime}$ (Premier SFC-500 or equiv.)
 Misc.-Battery holder, dial knobs, line cord, transistor socket, terminal strips, hookup wire, grommet, solder, nuts, bolts, etc.

[^1]: Every effort has been made to ensure accuracy of the information listed in this publication, but absolute accuracy is not guaranteed and, of course, only information available up to press-time could be included. Copyright 1964 by Science \& Mechanics Publishing Co., a subsidiary of Davis Publications, Inc., 505 Park Avenue, New York, New York 10022.

[^2]: "LETTERING Tricks!" Learn Speedy Methods! Beginners and Professionals write Harris, P. O. Box 1567-XA, Portland 7, Oregon.

